نتایج جستجو برای: cotyledon

تعداد نتایج: 2674  

Journal: :Plant physiology 2001
H E Boccalandro C A Mazza M A Mazzella J J Casal C L Ballaré

Ultraviolet B radiation (UV-B, 290-315 nm) can cause damage and induce photomorphogenic responses in plants. The mechanisms that mediate the photomorphogenic effects of UV-B are unclear. In etiolated Arabidopsis seedlings, a daily exposure to 2.5 h of UV-B enhanced the cotyledon opening response induced by a subsequent red light (R) pulse. An R pulse alone, 2.5 h of UV-B terminated with a far-r...

Journal: :Plant physiology 2005
Senthil Subramanian Madge Y Graham Oliver Yu Terrence L Graham

Isoflavones are thought to play diverse roles in plant-microbe interactions and are also potentially important to human nutrition and medicine. Isoflavone synthase (IFS) is a key enzyme for the formation of the isoflavones. Here, we examined the consequences of RNAi silencing of genes for this enzyme in soybean (Glycine max). Soybean cotyledon tissues were transformed with Agrobacterium rhizoge...

Journal: :Tree physiology 2009
Inger Hakman Henrik Hallberg Joakim Palovaara

Auxin and polar auxin transport have been implicated in controlling embryo patterning and development in angiosperms but less is known from the gymnosperms. The aims of this study were to determine at what stages of conifer embryo development auxin and polar auxin transport are the most important for normal development and to analyze the changes in embryos after treatment with the polar auxin i...

2008
Ignacio M. Barberis James W. Dalling

Some large-seeded tree species have cotyledonary reserves that persist for months after seedling establishment. We carried out two screened growing-house experiments with seedlings of Gustavia superba (Lecythidaceae) to test hypotheses proposed to explain why cotyledons are retained. We grew seedlings from large and small seeds in sun and shade to determine if cotyledon reserves supplement phot...

Journal: :Plant & cell physiology 2010
Natsuko Kinoshita Alexandre Berr Christophe Belin Richard Chappuis Naoko K Nishizawa Luis Lopez-Molina

The stress phytohormone ABA inhibits the developmental transition taking the mature embryo in the dry seed towards a young seedling. ABA also induces the accumulation of the basic leucine zipper (bZIP) transcription factor ABA-insensitive 5 (ABI5) which, apart from blocking endosperm rupture, also protects the embryo by stimulating the expression of late embryogenesis abundant (LEA) genes that ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید