نتایج جستجو برای: cospectral graphs
تعداد نتایج: 97314 فیلتر نتایج به سال:
The critical group of a finite graph is an abelian group defined by the Smith normal form of the Laplacian. We determine the critical groups of the Peisert graphs, a certain family of strongly regular graphs similar to, but different from, the Paley graphs. It is further shown that the adjacency matrices of the two graphs defined over a field of order p2 with p ≡ 3 (mod 4) are similar over the ...
A graph is called of type k if it is connected, regular, and has k distinct eigenvalues. For example graphs of type 2 are the complete graphs, while those of type 3 are the strongly regular graphs. We prove that for any positive integer n, every graph can be embedded in n cospectral, non-isomorphic graphs of type k for every k ≥ 3. Furthermore, in the case k ≥ 5 such a family of extensions can ...
Abstract Graphs can be associated with a matrix according to some rule and we find the spectrum of graph respect that matrix. Two graphs are cospectral if they have same spectrum. Constructions help us establish patterns about structural information not preserved by We generalize construction for previously given distance Laplacian larger family graphs. In addition, show appropriate assumptions...
A graph G is said to be determined by its generalized spectrum (DGS for short) if for any graph H, H and G are cospectral with cospectral complements implies that H is isomorphic to G. Wang and Xu (2006) gave some methods for determining whether a family of graphs are DGS. In this paper, we shall review some of the old results and present some new ones along this line of research. More precisel...
The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...
We present a formulation of the Cayley-Hamilton theorem for hypermatrices in conjunction with the corresponding combinatorial interpretation. Finally we discuss how the formulation of the Cayley-Hamilton theorem for hyermatrices leads to new graph invariants which in some cases results in symmetry breakings among cospectral graphs.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید