نتایج جستجو برای: coprecipitation magnetic properties hyperthermia
تعداد نتایج: 1177551 فیلتر نتایج به سال:
Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia ...
Aims In recent years, iron oxide nanoparticles have shown incredible possibilities in biomedical applications due to their non-toxic function in biological systems. Furthermore, these nanoparticles have multifunctional applications, such as antibacterial, antifungal, and anticancer effects in medicine due to their magnetic properties. Methods & Materials In this article, 49 articles related t...
Cobalt ferrite nanoparticles were synthesized with coprecipitation or with the hydrothermal method. Stable water suspensions were prepared from the as-synthesized nanoparticles, with the addition of citric acid as a surfactant, and then used for the preparation of deposits under an applied magnetic field. The morphology of the cobalt ferrite nanoparticles was investigated with a transmission el...
A bifunctional hybrid nanomaterial, which can show magnetic and luminescent properties, was obtained. A magnetic phase was synthesized as a core/shell type composite. Nanocrystalline magnetite, Fe(3)O(4) was used as the core and was encapsulated in a silica shell. The luminescent phase was GdPO(4) doped with Eu(3+) ions, as the emitter. The investigated materials were synthesized using a coprec...
Introduction: Gd (III) ion has been known to be the best metal ion in the periodic table that can be used as a T1 MRI contrast agent. Gadolinium have 7 unpaired electrons and these electrons can make magnetic area. No other metal ions possess unpaired electron more than this. CAs based on the element Gd are classified as “positive”, by opposition to “negative” CAs. Nowadays, G...
Current clinically accepted technologies for cancer treatment still have limitations which lead to the exploration of new therapeutic methods. Since the past few decades, the hyperthermia treatment has attracted the attention of investigators owing to its strong biological rationales in applying hyperthermia as a cancer treatment modality. Advancement of nanotechnology offers a potential new he...
Aiming the application of localized hyperthermia, a magnetic induction system with new approaches is proposed. The techniques in this system for improving the effectiveness of localized hyperthermia are that using magnetic circuit and the multiple-coil array instead of a giant coil for generating magnetic field. Specially, amorphous metal is adopted as the material of magnetic circuit. Detail d...
Magnetic nanoparticle-mediated intracellular hyperthermia has been a largely experimental modality of hyperthermia, but this treatment modality has the potential to achieve tumor targeted heating without any side effects. The technique consists of targeting magnetic nanoparticles to tumor tissue and then applying an external alternating magnetic field to induce heat generation by the magnetic n...
Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...
The paper presents the investigation of magnetic nanoparticles (MNPs) dedicated to hyperthermia application. The crystal structure and size distributions have been determined by means of transmission electron microscope (TEM) and X-ray diffraction (XRD). Magnetic properties of the nanoparticles were tested by Mössbauer spectroscopy together with calorimetric experiments. The Mössbauer spectrosc...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید