نتایج جستجو برای: complex kdv equation
تعداد نتایج: 1000175 فیلتر نتایج به سال:
Small-amplitude waves in the Fermi-Pasta-Ulam (FPU) lattice with weakly anharmonic interaction potentials are described by the generalized Korteweg-de Vries (KdV) equation. Justification of the small-amplitude approximation is usually performed on the time scale, for which dynamics of the KdV equation is defined. We show how to extend justification analysis on longer time intervals provided dyn...
An action is constructed that gives an arbitrary equation in the KdV or MKdV hierarchies as equation of motion; the second Hamiltonian structure of the KdV equation and the Hamiltonian structure of the MKdV equation appear as Poisson bracket structures derived from this action. Quantization of this theory can be carried out in two different schemes, to obtain either the quantum KdV theory of Ku...
We study here the water waves problem for uneven bottoms in a highly nonlinear regime where the small amplitude assumption of the Korteweg-de Vries (KdV) equation is enforced. It is known that, for such regimes, a generalization of the KdV equation (somehow linked to the CamassaHolm equation) can be derived and justified [Constantin and Lannes, Arch. Ration. Mech. Anal. 192 (2009) 165–186] when...
The Cauchy problem for the Korteweg de Vries (KdV) equation with small dispersion of order ǫ, ǫ ≪ 1, is characterized by the appearance of a zone of rapid modulated oscillations. These oscillations are approximately described by the elliptic solution of KdV where the amplitude, wave-number and frequency are not constant but evolve according to the Whitham equations. Whereas the difference betwe...
We give a systematic account of isospectral deformations for Sturm-Liouville and Dirac-type operators and associated hierarchies of nonlinear evolution equations. In particular, we study generalized KdV and modified KdV-hierarchies and their reduction to the standard (m)KdV-hierarchy. As an example we study the Harry Dym equation in some detail and relate its solutions to KdV-solutions and to H...
ABSTRACT. The Cauchy problem for the Korteweg de Vries (KdV) equation with small dispersion of order ǫ, ǫ ≪ 1, is characterized by the appearance of a zone of rapid modulated oscillations. These oscillations are approximately described by the elliptic solution of KdV where the amplitude, wave-number and frequency are not constant but evolve according to the Whitham equations. Whereas the differ...
The KdV equation can be considered as a special case of the general equation ut + f(u)x − δg(uxx)x = 0, δ > 0, (0.1) where f is non-linear and g is linear, namely f(u) = u/2 and g(v) = v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [11], [6], [2] and the references therein). We show through numerical evidence that a comp...
The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...
This paper concerns the inverse problem of retrieving the principal coefficient in a Korteweg-de Vries (KdV) equation from boundary measurements of a single solution. The Lipschitz stability of this inverse problem is obtained using a new global Carleman estimate for the linearized KdV equation. The proof is based on the Bukhgĕım-Klibanov method.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید