نتایج جستجو برای: coal direct chemical looping
تعداد نتایج: 816708 فیلتر نتایج به سال:
We present a theoretical model for understanding the kinetics of a long polymer in solution. A Smoluchowski-like equation has been used to model the problem of polymer looping with a Dirac delta function sink of finite strength. The results for rate constants have been obtained by using Green’s function. In this model, the rate constants for end-to-end looping of polymer exhibits simple Arrheni...
This work presents a simulation study on both energy and economics of power generation plants with inherent CO2 capture based on chemical looping combustion technologies. Combustion systems considered include a conventional chemical looping system and two extended three-reactor alternatives (exCLC and CLC3) for simultaneous hydrogen production. The power generation cycles include a combined cyc...
Chemical looping gasification (CLG) is a promising method for the utilization of biomass to produce syngas. However, its realization is largely dependent on the use of an oxygen carrier with a high and stable reactivity in cyclic reduction and oxidation. This work focused on the improvement of reactivity and stability of CuO in chemical looping gasification via the addition of MgAl2O4 as an ine...
Sulfur emission from coal combustion presents many environmental problems. The techniques used to reduce the amount of sulfur in coal before combustion, include physical, chemical and biological processes.Biological processes based on degradation of sulfur compounds by microorganisms offer many advantages over the conventional physical and chemical processes. The processes are performed und...
This work analyses a Ca looping system that uses CaO as regenerable sorbent to capture CO2 from the flue gases generated in power plants. The CO2 is captured by CaO in a CFB carbonator while coal oxycombustion provides the energy required to regenerate the sorbent. Part of the energy introduced into the calciner can be transferred to a new supercritical steam cycle to generate additional power....
due to the abundance of the non-coking coal and limitations as well as the high costs of the natural gas, the presentstudy examined the direct reduction of hematite (iron oxide) ore in the temperature range of 800-1000 °c by thenon-coking coal volatiles. approximately, 74.9% of the total amounts of volatiles and gases exit the coal up to800°c. the onset temperature to exit volatiles from the no...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید