نتایج جستجو برای: clustering error
تعداد نتایج: 353239 فیلتر نتایج به سال:
We propose clustering samples given their pairwise similarities by factorizing the similarity matrix into the product of a cluster probability matrix and its transpose. We propose a rotation-based algorithm to compute this left-stochastic decomposition (LSD). Theoretical results link the LSD clustering method to a soft kernel k-means clustering, give conditions for when the factorization and cl...
Speech recognition in car noise environments using multiple models according to noise masking levels
In speech recognition for real-world applications, the performance degradation due to the mismatch introduced between training and testing environments should be overcome. In this paper, to reduce this mismatch, we provide a hybrid method of spectral subtraction and residual noise masking. We also employ multiple model approach to obtain improved robustness over various noise environments. In t...
This paper considers the problem of estimating a high-dimensional vector of parameters θ ∈ R from a noisy observation. The noise vector is i.i.d. Gaussian with known variance. For a squared-error loss function, the James-Stein (JS) estimator is known to dominate the simple maximum-likelihood (ML) estimator when the dimension n exceeds two. The JS-estimator shrinks the observed vector towards th...
The problem of labelling speaker turns by automatically segmenting and clustering a continuous audio stream is addressed. A new clustering scheme is presented and evaluated using a clustering e ciency score which treats both agglomerative and divisive clustering strategies equally. Results show an e ciency of 70% can be obtained on both manually and automatically derived segments on the 1996 Hu...
Clustering is often used for discovering structure in data. Clustering systems diier in the objective function used to evaluate clustering quality and the control strategy used to search the space of clusterings. Ideally, the search strategy should consistently construct clusterings of high quality, but be computationally inexpensive as well. In general, we cannot have it both ways, but we can ...
Clustering is often used for discovering structure in data. Clustering systems diier in the objective function used to evaluate clustering quality and the control strategy used to search the space of clusterings. Ideally, the search strategy should consistently construct clusterings of high quality, but be computationally inexpensive as well. In general, we cannot have it both ways, but we can ...
Clustering is often used for discovering structure in data. Clustering systems diier in the objective function used to evaluate clustering quality and the control strategy used to search the space of clusterings. Ideally, the search strategy should consistently construct clusterings of high quality, but be computationally inexpensive as well. In general, we cannot have it both ways, but we can ...
Clustering is often used for discovering structure in data. Clustering systems di er in the objective function used to evaluate clustering quality and the control strategy used to search the space of clusterings. Ideally, the search strategy should consistently construct clusterings of high quality, but be computationally inexpensive as well. In general, we cannot have it both ways, but we can ...
This paper deals with nonparametric estimation of conditional densities in mixture models in the case when additional covariates are available. The proposed approach consists of performing a preliminary clustering algorithm on the additional covariates to guess the mixture component of each observation. Conditional densities of the mixture model are then estimated using kernel density estimates...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید