We say that a class $${\mathcal {G}}$$ of analytic functions f the form $$f(z)=\sum _{n=0}^{\infty } a_{n}z^{n}$$ in unit disk $${\mathbb {D}}:=\{z\in {\mathbb {C}}: |z|<1\}$$ satisfies Bohr phenomenon if for largest radius $$R_{f}<1$$ , following inequality $$\begin{aligned} \sum \limits _{n=1}^{\infty |a_{n}z^{n}| \le d(f(0),\partial f({\mathbb {D}}) ) \end{aligned}$$ holds $$|z|=r\le R_{f}$$...