نتایج جستجو برای: circulant
تعداد نتایج: 1801 فیلتر نتایج به سال:
Calculating the permanent of a (0, 1) matrix is a #P -complete problem but there are some classes of structuredmatrices for which the permanent is calculable in polynomial time. The most well-known example is the fixedjump (0, 1) circulant matrix which, using algebraic techniques, was shown by Minc to satisfy a constant-coefficient fixed-order recurrence relation. In this note we show how, by i...
In this paper, we completely determine the connectivity of every infinite circulant digraphs and prove that almost all infinite circulant digraphs are infinitely strongly connected and therefore have both oneand two-way infinite Hamiltonian paths.
Circulant graphs are an extremely well-studied subclass of regular graphs, partially because they model many practical computer network topologies. It has long been known that the number of spanning trees in n-node circulant graphs with constant jumps satisfies a recurrence relation in n. For the non-constant-jump case, i.e., where some jump sizes can be functions of the graph size, only a few ...
a kernel $j$ of a digraph $d$ is an independent set of vertices of $d$ such that for every vertex $w,in,v(d),setminus,j$ there exists an arc from $w$ to a vertex in $j.$in this paper, among other results, a characterization of $2$-regular circulant digraph having a kernel is obtained. this characterization is a partial solution to the following problem: characterize circulant digraphs which hav...
In this paper we present a time-polynomial recognition algorithm for certain classes of circulant graphs. Our approach uses coherent configurations and Schur rings generated by circulant graphs for elucidating their symmetry properties and eventually finding a cyclic automorphism.
For a given graph G, denote by A its adjacency matrix and F (t) = exp(iAt). We say that there exists a perfect state transfer (PST) in G if |F (τ)ab| = 1, for some vertices a, b and a positive real number τ . Such a property is very important for the modeling of quantum spin networks with nearest-neighbor couplings. We consider the existence of the perfect state transfer in integral circulant g...
Circulant graphs are an important class of interconnection networks in parallel and distributed computing. Integral circulant graphs play an important role in modeling quantum spin networks supporting the perfect state transfer as well. The integral circulant graph ICGn(D) has the vertex set Zn = {0, 1, 2, . . . , n− 1} and vertices a and b are adjacent if gcd(a− b, n) ∈ D, where D ⊆ {d : d | n...
All graphs considered in the paper are directed. Let % be a graph on n vertices which we identify with the elements of the additive cyclic group Zn 1⁄4 f0; 1; . . . ; n 1g. The graph % is called circulant if it has a cyclic symmetry, that is, if the permutation ð0; 1; 2; . . . ; n 1Þ is an automorphism of the graph. Each circulant graph is completely determined by its connection set S which is ...
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید