نتایج جستجو برای: blur kernel estimation
تعداد نتایج: 311339 فیلتر نتایج به سال:
PROBE (Progressive Removal of Blur Residual) is a recursive framework for blind deblurring. Using the elementary modified inverse filter at its core, PROBE’s experimental performance meets or exceeds the state of the art, both visually and quantitatively. Remarkably, PROBE lends itself to analysis that reveals its convergence properties. PROBE is motivated by recent ideas on progressive blind d...
Recovering an un-blurred image from a single motion-blurred picture has long been a fundamental research problem. If one assumes that the blur kernel – or point spread function (PSF) – is shift invariant, the problem reduces to that of image deconvolution. Image deconvolution can be further categorized as non-blind and blind. In non-blind deconvolution, the motion blur kernel is assumed to be k...
Sparse blind deconvolution is the problem of estimating the blur kernel and sparse excitation, both of which are unknown. Considering a linear convolution model, as opposed to the standard circular convolution model, we derive a sufficient condition for stable deconvolution. The columns of the linear convolution matrix form a Riesz basis with the tightness of the Riesz bounds determined by the ...
We address the problem of blind motion deblurring from a single image, caused by a few moving objects. In such situations only part of the image may be blurred, and the scene consists of layers blurred in different degrees. Most of of existing blind deconvolution research concentrates at recovering a single blurring kernel for the entire image. However, in the case of different motions, the blu...
The human face is one of the most interesting subjects involved in numerous applications. Significant progress has been made towards the image deblurring problem, however, existing generic deblurring methods are not able to achieve satisfying results on blurry face images. The success of the state-of-the-art image deblurring methods stems mainly from implicit or explicit restoration of salient ...
Camera shake during exposure leads to image blur and poses an important problem in digital photography. Blind deconvolution recovers the sharp original image from a blurred image. MAP has been the most widely used deconvolution field but naive MAP methods mostly tends to favour no-blur solution. An intermediate representation of the image called unnatural representation has been found to the ma...
Due to the finite acquisition time of practical cameras, objects can move during image acquisition, therefore introducing motion blur degradations. Traditionally, these degradations are treated as undesirable artifacts that should be removed before fllrther processing. In this work, we consider the use of motion blur as an indication of scene motion. JVe present two robust regularized motion es...
The blurred image blind restoration is a difficult problem of image processing. The key is the estimation of the Point Spread Function and non-blind deconvolution algorithm. In this paper, we propose a fast robust algorithm based on radon transform-domain to determine the blur kernel function. Then the blurred images are restored by using a modified fast non-blind deconvolution method based on ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید