نتایج جستجو برای: block numerical range

تعداد نتایج: 1118207  

Journal: :Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 1998

2014
BENOÎT COLLINS PIOTR GAWRON ALEXANDER E. LITVAK KAROL ŻYCZKOWSKI

We analyze the numerical range of high-dimensional random matrices, obtaining limit results and corresponding quantitative estimates in the non-limit case. For a large class of random matrices their numerical range is shown to converge to a disc. In particular, numerical range of complex Ginibre matrix almost surely converges to the disk of radius √ 2. Since the spectrum of non-hermitian random...

Journal: :نظریه تقریب و کاربرد های آن 0
m. m. shamivand department of mathematics, islamic azad university, borujerd branch, borujerd, iran. a. shahsavaran department of mathematics, islamic azad university, borujerd branch, borujerd, iran.

in this work, we present a numerical method for solving nonlinear fredholmand volterra integral equations of the second kind which is based on the useof block pulse functions(bpfs) and collocation method. numerical examplesshow eciency of the method.

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

Journal: :Comptes Rendus Mathematique 2017

2004
Kim-Chuan Toh Kok-Kwang Phoon Swee-Huat Chan S.-H. CHAN

This paper presents a systematic theoretical and numerical evaluation of three common block preconditioners in a Krylov subspace method for solving symmetric indefinite linear systems. The focus is on large-scale real world problems where block approximations are a practical necessity. The main illustration is the performance of the block diagonal, constrained, and lower triangular precondition...

Journal: :Transactions of the Society of Instrument and Control Engineers 1998

For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید