نتایج جستجو برای: basis function neural network
تعداد نتایج: 2248031 فیلتر نتایج به سال:
This paper presents a comparative study of six soft computing models namely multilayer perceptron networks, Elman recurrent neural network, radial basis function network, Hopfield model, fuzzy inference system and hybrid fuzzy neural network for the hourly electricity demand forecast of Czech Republic. The soft computing models were trained and tested using the actual hourly load data obtained ...
The main aim of this paper is to determine to analyze the electrical transfer capability among different electricity markets using repeated power flow technique. Instead of minimizing the total cost in the conventional problem, in the paper, the transfer capability between two markets or two electricity supply and generation areas is maximized. To reduce the time required to compute transfer ca...
This paper presents a comparative study of six soft computing models namely multilayer perceptron networks, Elman recurrent neural network, radial basis function network, Hopfield model, fuzzy inference system and hybrid fuzzy neural network for the hourly electricity demand forecast of Czech Republic. The soft computing models were trained and tested using the actual hourly load data obtained ...
The purpose of this paper is to explore the representation capability of radial basis function (RBF) neural networks. The main results are: 1) the necessary and sufficient condition for a function of one variable to be qualified as an activation function in RBF network is that the function is not an even polynomial, and 2) the capability of approximation to nonlinear functionals and operators b...
Partial differential equations (PDEs) with boundary conditions (Dirichlet or Neumann) defined on boundaries with simple geometry have been successfully treated using sigmoidal multilayer perceptrons in previous works. This article deals with the case of complex boundary geometry, where the boundary is determined by a number of points that belong to it and are closely located, so as to offer a r...
This paper proposes a framework for constructing and training a radial basis function (RBF) neural network. For this purpose, a sequential learning algorithm is presented to adapt the structure of the network, in which it is possible to create a new hidden unit and also to detect and remove inactive units. The structure of the Gaussian functions is modi"ed using a pseudoGaussian function (PG) i...
The behavior of Radial Basis Function (RBF) Networks greatly depends on how the center points of the basis functions are selected. In this work we investigate the use of instance reduction techniques, originally developed to reduce the storage requirements of instance based learners, for this purpose. Five Instance-Based Reduction Techniques were used to determine the set of center points, and ...
This paper investigates the potential application of artificial neural networks in permanent deformation parameter identification for rockfill dams. Two kinds of neural network models, multilayer feedforward network BP and radial basis function RBF networks, are adopted to identify the parameters of seismic permanent deformation for Zipingpu Dam in China. The dynamic analysis is carried out by ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید