نتایج جستجو برای: ant colony optimization
تعداد نتایج: 378964 فیلتر نتایج به سال:
Ant Colony Optimization (ACO) is a new population oriented search metaphor that has been successfully applied toNP-hard combinatorial optimization problems. In this paper we discuss parallelization strategies for Ant Colony Optimization algorithms. We empirically test the most simple strategy, that of executing parallel independent runs of an algorithm. The empirical tests are performed applyin...
Quadratic assignment problem (QAP) is one of fundamental combinatorial optimization problems in many fields. Many real world applications such as backboard wiring, typewriter keyboard design and scheduling can be formulated as QAPs. Ant colony algorithm is a multi-agent system inspired by behaviors of real ant colonies to solve optimization problems. Ant colony optimization (ACO) is one of new ...
-In this article two different optimization algorithms are presented to solve the deficiency of ant colony algorithm such as slow convergence rate and easy to fall into local optimum. This method based on Max-Min Ant System, established an adaptive model for pheromone evaporation coefficient adjusted adaptively and avoided the ants falling into local optimum. At the same time, this optimization...
To enhance the optimization ability of ant colony optimization, this paper proposes a Bloch sphere-based quantum-inspired ant colony optimization algorithm. In the proposed approach, the positions of ants are encoded by qubits described on Bloch sphere. First, the destinations of ants are obtained by the select probability designed by the pheromone and heuristic information, and then, the movem...
The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...
in this paper, a multi-objective reconfiguration problem has been solved simultaneously by a modified ant colony optimization algorithm. two objective functions, real power loss and energy not supplied index (ens), were utilized. multi-objective modified ant colony optimization algorithm has been generated by adding non-dominated sorting technique and changing the pheromone updating rule of ori...
Ant colony optimization is an ant algorithm framework that took inspiration from foraging behavior of ant colonies. Indeed, ACO algorithms use a chemical communication, represented by pheromone trails, to build good solutions. However, ants involve different communication channels to interact. Thus, this paper introduces the acoustic communication between ants while they are foraging. This proc...
Ant System, the first Ant Colony Optimization algorithm, showed to be a viable method for attacking hard combinatorial optimization problems. Yet, its performance, when compared to more fine-tuned algorithms, was rather poor for large instances of traditional benchmark problems like the Traveling Salesman Problem. To show that Ant Colony Optimization algorithms could be good alternatives to exi...
Ant System, the first Ant Colony Optimization algorithm, showed to be a viable method for attacking hard combinatorial optimization problems. Yet, its performance, when compared to more fine-tuned algorithms, was rather poor for large instances of traditional benchmark problems like the Traveling Salesman Problem. To show that Ant Colony Optimization algorithms could be good alternatives to exi...
One of the most important issues in the field of optimizing water resources management is the optimal utilization of the dam reservoirs. In the recent decades, the optimal operation of dams has been one of the most interesting issues considered by water resources planners in the country. Due to the complexities of the typical optimization methods, employing an evolutionary algorithm is regarded...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید