نتایج جستجو برای: alternative legendre polynomials
تعداد نتایج: 344904 فیلتر نتایج به سال:
The analyzing power of pp → ppπ 0 reaction has been measured at the beam energy of 390 MeV. The missing mass technique of final protons has been applied to identify the π 0 production event. The dependences of the analyzing power on the pion emission-angle and the relative momentum of the protons have been obtained. The angular dependence could be decomposed by the Legendre polynomial and the r...
properties of the hybrid of block-pulse functions and lagrange polynomials based on the legendre-gauss-type points are investigated and utilized to define the composite interpolation operator as an extension of the well-known legendre interpolation operator. the uniqueness and interpolating properties are discussed and the corresponding differentiation matrix is also introduced. the appli...
A new family of self-calibration additional parameters (APs) is presented for calibrating airborne camera systems. We point out that photogrammetric self-calibration can to a very large extent be considered as a function approximation problem in mathematics. Based on the mathematical approximation theory, a novel family of so-called Legendre APs is developed based on the orthogonal Legendre pol...
Abstract. For any positive integer n and variables a and x we define the generalized Legendre polynomial Pn(a, x) by Pn(a, x) = Pn k=0 a k −1−a k ( 1−x 2 ). Let p be an odd prime. In this paper we prove many congruences modulo p related to Pp−1(a, x). For example, we show that Pp−1(a, x) ≡ (−1)〈a〉p Pp−1(a,−x) (mod p), where a is a rational p− adic integer and 〈a〉p is the least nonnegative resid...
The analyzing power of pp → ppπ 0 reaction has been measured at the beam energy of 390 MeV. The missing mass technique of final protons has been applied to identify the π 0 production event. The dependences of the analyzing power on the pion emission-angle and the relative momentum of the protons have been obtained. The angular dependence could be decomposed by the Legendre polynomial and the r...
We discuss the large N limit of the supersymmetric CP N models as an illustration of Cecotti and Vafa's tt * formalism. In this limit the 'tt * equation' becomes the long wavelength limit of the 2D Toda lattice, an equation first studied in the context of self-dual gravity. We show how simple finite temperature and large N techniques determine the relevant solution, and verify analytically that...
Introduction/purpose: Certain integrals involving the generalized Mittag-Leffler function with different types of polynomials are established. Methods: The properties used in conjunction kinds such as Jacobi, Legendre, and Hermite order to evaluate their integrals. Results: Some integral formulae Legendre function, Bessel Maitland hypergeometric functions derived. Conclusions: results obtained ...
We show how Turán’s inequality Pn(x) −Pn−1(x)Pn+1(x) ≥ 0 for Legendre polynomials and related inequalities can be proven by means of a computer procedure. The use of this procedure simplifies the daily work with inequalities. For instance, we have found the stronger inequality |x|Pn(x) 2 − Pn−1(x)Pn+1(x) ≥ 0, −1 ≤ x ≤ 1, effortlessly with the aid of our method.
This article is an attempt to understand the ubiquity of tableaux and of Pieri and Cauchy formulae for combinatorially defined families of symmetric functions. We show that such formulae are to be expected from symmetric functions arising from representations of Heisenberg algebras. The resulting framework that we describe is a generalization of the classical Boson-Fermion correspondence, from ...
We introduce a new class of polynomials {Pn}, that we call polar Legendre polynomials, they appear as solutions of an inverse Gauss problem of equilibrium position of a field of forces with n + 1 unit masses. We study algebraic, differential and asymptotic properties of this class of polynomials, that are simultaneously orthogonal with respect to a differential operator and a discrete-continuou...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید