نتایج جستجو برای: 4 term arithmetic progression

تعداد نتایج: 1989397  

Journal: :Math. Comput. 1997
Harvey Dubner Harry Nelson

It is conjectured that there exist arbitrarily long sequences of consecutive primes in arithmetic progression. In 1967, the first such sequence of 6 consecutive primes in arithmetic progression was found. Searching for 7 consecutive primes in arithmetic progression is difficult because it is necessary that a prescribed set of at least 1254 numbers between the first and last prime all be composi...

2009
Michael J. Dinneen Nan Rosemary Ke Masoud Khosravani

In this paper we study the problem of labeling the edges of a graph with positive integers such that the sequence of the sums of incident edges of each vertex makes a finite arithmetic progression. We give conditions for paths, cycles, and bipartite graphs to have such a labeling. We then address the opposite problem of finding an edge labeled graph for a given finite arithmetic progression. We...

Journal: :Indagationes Mathematicae 2004

Journal: :J. Comb. Theory, Ser. A 2012
Linyuan Lu Xing Peng

This paper is motivated by a recent result of Wolf [12] on the minimum number of monochromatic 4-term arithmetic progressions (4-APs, for short) in Zp, where p is a prime number. Wolf proved that there is a 2-coloring of Zp with 0.000386% fewer monochromatic 4-APs than random 2-colorings; the proof is probabilistic and non-constructive. In this paper, we present an explicit and simple construct...

Journal: :Math. Comput. 2002
Harvey Dubner Tony Forbes Nik Lygeros Michel Mizony Harry Nelson Paul Zimmermann

In 1967 the first set of 6 consecutive primes in arithmetic progression was found. In 1995 the first set of 7 consecutive primes in arithmetic progression was found. Between November, 1997 and March, 1998, we succeeded in finding sets of 8, 9 and 10 consecutive primes in arithmetic progression. This was made possible because of the increase in computer capability and availability, and the abili...

Journal: :J. Comb. Theory, Ser. A 1997
Tom C. Brown Donovan R. Hare

Let G(k;r) denote the smallest positive integer g such that if 1 = a1;a2; : : : ;ag is a strictly increasing sequence of integers with bounded gaps a j+1 a j r, 1 j g 1, then fa1;a2; : : : ;agg contains a k-term arithmetic progression. It is shown that G(k;2) > q k 1 2 4 3 k 1 2 , G(k;3) > 2 k 2 ek (1+ o(1)), G(k;2r 1)> r k 2 ek (1+o(1)), r 2. For positive integers k, r, the van der Waerden num...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید