نتایج جستجو برای: مقسوم علیه صفر حلقه
تعداد نتایج: 36171 فیلتر نتایج به سال:
فرض کنید یک حلقه جابجایی و یکدار و یک - مدول یکانی باشد. فرض کنید مجموعه مقسوم علیه صفر حلقه باشد. گراف ساده با مجموعه رئوس در سال 1999 توسط اندرسون و لیوینگستون تعریف شده است که در آن هر دو راًس متمایز و مجاورند اگر وتنها اگر این گراف را گراف مقسوم علیه صفر حلقه می نامند. ما در این رساله تعریف گراف مقسوم علیه حلقه را به گراف تابدار وابسته به مدول تعمیم می دهیم. فرض کنید مجموعه عناصر تابدار - مد...
در بخش اول از فصل اول پیشنیازها و مقدمات نظریه گراف و در بخش دوم مقدمات جبر جابجایی بیان شده است. در بخش سوم این فصل تست شرکت پذیری لایت شرح داده شده است.در بخش اول از فصل دوم شرایط لازم و کافی برای اینکه یک گراف، گراف مقسوم علیه صفر متناظر با یک نیمگروه جابجایی باشد بیان می شود.در بخش دوم سکل یک نیمگروه جابه جایی را معرفی کرده و به بررسی ساختار آن به کمک گراف مقسوم علیه صفر وابسته به آن می پرد...
در دهه اخیر مقالات زیادی به رشته تحریر در آمده که در آنها به یک حلقه متناهی یک گراف ساده وابسته شده است و با تجزیه و تحلیل آن گراف نتایج عمیقی در نظریه حلقه ها حاصل شده است در این پایان نامه ساختار گراف مقسوم علیه صفر تعیین شده توسط کلاسهای هم ارزی مقسوم علیه های صفر حلقه جابجائی، یکدار و نوتری r را بررسی می کنیم و نشان می دهیم که چگونه می توان اطلاعاتی در باره حلقه r را از این ساختار بدست آورد...
برای مدول نیم دوگان c روی یک حلقه رده g -تصویری رده اوسلندر و رده باس را نسبت به مقسوم علیه صفر دقیق مورد مطالعه قرار خواهیم داد.بهلاوه بررسی می کنیم که اگر m یک r-مدول x یک مقسوم علیه صفر دقیق روی r باشد آنگاه m/xm تحت چه شرایطی متعلق به رده های فوق می باشد.همچنین بعدهای ic-انژکتیو و pc-تصویری و fc-تصویری نسبت به مقسوم علیه صفر دقیق مورد مطالعه قرار می گیرد.
فرض کنیم r حلقه ای جابه جایی و یکدار باشد.در این پایان نامه گراف ایده آل های پوچ ساز یکدیگر r را مطالعه می کنیم.این گراف را با علامت (ag(r نشان می دهیم که گرافی غیر جهت دار با مجموعه رئوس a(r)*=a(r)-{(0)} است. که در آن a(r) مجموعه همه ایده آل هایی از r است که دارای پوچ ساز ناصفر باشند.دو راس iو j در این گراف مجاورند اگر و فقط اگر ij=0 به طور خلاصه مهم ترین ویژگی های مورد بررسی در این پایان نام...
بررسی گراف مقسوم علیه فشرده صفر،تعریف ساختار گرافی جدید شبکه مقسوم علیه صفر(? (r از حلقه r ، و قضیه ای را بیان می کنیم که نشان دهد (? (r تقریبا همیشه همبند است.
در این پایان نامه، به مطالعه و بررسی گراف مقسوم علیه صفر وابسته به حلقه c(x) می پردازیم. با به کارگیری خواص توپولوژیکی فضای x،خواصی از این گراف مانند قطر، کمر و عدد خوشه ای را مورد بررسی قرار می دهیم. در پایان گراف مقسوم علیه صفر حلقه های جابجایی را نسبت به ایده آل ها مطالعه می نماییم.
فرض کنید $ r $ حلقه ای جابه جایی و یکدار و $ z(r) $ مجموعه مقسوم علیه های صفر حلقه $ r $ باشد. گراف جمعی حلقه $ r $ گرافی است که رئوس آن عناصر حلقه می باشد و دو راس متمایز $ x $ و $ y $ مجاورند اگر و تنها اگر $ x+y in z(r) $ . این گراف با نماد $ t(gamma(r)) $ نمایش داده می شود. در این پایان نامه دو زیر گراف $ t_0(gamma(r)) $ و $ z_0(gamma(r)) $ که رئوس آن به ترتیب $ r ^* $...
برای یک حلقه¬¬¬ی جابه¬جایی و یکدار r، گراف شمارنده¬ی صقر نسبت به ایده¬آل i، که با γ_i (r) نشان داده می شود، گرافی است که مجموعه¬ی رئوس این گراف {xϵ ri | xy ϵ i,y ϵ ri ازای به } می¬باشد و دو رأس مجزای xو y از این گراف مجاورند، اگر و تنها اگر xy ϵ i. این پایان نامه بر اساس مقاله¬ی [5] نوشته شده است. در این پایان نامه گراف γ_(ann(m)) (r) را مورد مطالعه قرار می¬دهیم که ann(m) مجموعه اعضای پوچساز...
در این پایان نامه، گراف وابسته به bci/bck -جبرها را مطالعه می کنیم. ابتدا مفاهیم ( r(a)، l(a، شبه ایده آل و مقسوم علیه های صفر را معرفی نموده، با چند مثال ویژگی های مربوط به آنها را بررسی و شرایطی را برای (شبه) ایده آل bci/bck -جبرها برای آنکه l- اول باشد بیان می نماییم. نشان می دهیم که گراف وابسته bck-جبرها، گرافی همبند است به طوری که بین هر راس غیر صفر آن با راس صفر یال وجود دارد، ا...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید