نتایج جستجو برای: عدد رنگی total
تعداد نتایج: 818844 فیلتر نتایج به سال:
یک k-رنگ آمیزی قوی یالی گراف g=(v,e) تابع است به طوری که به هر دو یالی که منتهی به یک رأس یا مجاور با یک یال هستند، مقدارها (رنگ های) متفاوتی اختصاص داده شود. اندیس رنگی قوی گراف g که آن را با ?s(g) نشان می دهیم، کوچکترین عدد k است که یک k-رنگ آمیزی قوی یالی برای g موجود باشد. در این پایان نامه ?s(g) را برای هالین گراف مکعبی کامل و گراف های دوبخشی sm (k,l) و sm(k,l,?) مورد مطالعه قرار می دهیم. ...
در این پایان نامه ارتباط بین خواص جبری و خواص گرافی, گراف ایده آل پوچ کن حلقه های تعویض پذیر بیان می شود. فرض کنیم r یک حلقه تعویض پذیر و یکدار باشد. در این صورت ایدآل i از r را ایده آل پوچساز می گوییم هرگاه ایده آل ناصفرj از r وجود داشته باشد به طوری که ij=(0). مجموعه ی همه ی ایده آل های پوچ ساز حلقه ی r را با a(r) نشان می دهیم. گراف ایده آل پوچ کن گرافی است با مجموعه رئوس a( r ) ...
گراف دلخواه g دارای یک k- رنگ آمیزی معتبر است . اگر تخصیص k رنگ متفاوت به راسهای g وجود داشته باشد به طوری که هیچ دو راس متصل یک رنگ یکسان نداشته باشند به کوچکترین مقدار k عدد رنگی گراف می گوییم . در گراف دلخواه g به مجموعه ای از راس ها با یک رنگ آمیزی داده شده ، یک مجموعه تعیین کنند رنگ آمیزی راسی g گوییم هر گاه بتوان این رنگ آمیزی را به طور منحصر به فرد به یک k رنگ آمیزی از راس های g توسعه د...
هدف از این رساله معرفی سه گراف و بررسی خواص اساسی و مهم این گراف ها از جمله هم بندی، کامل بودن، مسطح،1-مسطح،همیلتونی و محاسبه پایاهای عددی از قبیل کمر،قطر،عدد غالب و عدد رنگی به صورت زیر می باشد
این پایان نامه شامل 4 فصل میباشد، در فصل اول تعاریف و مفاهیم مورد نیاز در فصول بعدی یادآوری شده، فصل دوم درباره همبندی، قطر و کمر گراف اشتراکیست. فصل سوم درمورد عدد رنگی و عدد خوشه ای گراف اشتراکی و ارتباط این دو با زیرمدولهای یک مدول میباشد و سرانجام در فصل آخر پایان نامه گراف هم ماکسیمال مدول را بررسی میکنیم.
مسئله رنگ آمیزی راسی گراف یکی از شناخته شده ترین مسائل در نظریه گراف و بهینه سازی ترکیبیاتی است. هدف این مسئله تعیین عدد رنگی گراف یعنی حداقل تعداد رنگ برای رنگ آمیزی راسی گراف و هم چنین پیدا کردن یک رنگ آمیزی برای گراف با استفاده از این تعداد رنگ است به طوری که رئوس مجاور رنگ یکسان نداشته باشند. مسئله رنگ آمیزی راسی گراف جز مسائل np-سخت است. از این رو روش های فراوانی برای حل آن ارائه شده است...
رنگ آمیزی گراف فازی یکی از مهم ترین مسائل بهینه سازی ترکیبیاتی است. بسیاری از مثال های عملی مانند جدول زمانی، خوشه بندی شبکه ها و کنترل نور ترافیک را می توان به عنوان مسأله رنگ آمیزی مدل بندی کرد. مسأله رنگ آمیزی فازی متشکل از تعیین عدد رنگی از یک گراف فازی و تابع رنگ آمیزی مرتبط با آن است. در این پژوهش، ابتدا مفاهیم و مقدمات اولیه فازی بیان می شود، سپس گراف فازی و مکمل آن توضیح داده می...
ض کنید g یک گروه متناهی باشد. در اینصورت گراف را به صورت زیر تعریف می کنیم رئوس همان عنصر گروه g می باشد و دو راس به هم وصل می شوند اگر و تنها اگر آن دو راس کل گروه g را تولید کنند. عدد رنگی راسی کمترین تعداد رنگهایی می باشد که می توان یک گراف را رنگ آمیزی کرد به طوریکه دو راس مجاور همرنگ نباشند. زیر مجموعه x از رئوس را یک عدد دسته گوییم هرگاه زیر گراف القایی بر x یک گراف کامل باشد . ماکزیمم ان...
چکیده ی فارسی یک رنگ آمیزی رأسی سره از گراف g را یک bرنگ آمیزی از گراف g می نامند هرگاه هر کلاس رنگی دارای رأسی باشد که این رأس در تمام کلاس های رنگی دیگر همسایه داشته باشد. هر رنگ آمیزی از گراف g با chi(g) رنگ، یک bرنگ آمیزی از g است. به بزرگ ترین عدد طبیعی k که یک bرنگ آمیزی از گراف g با k رنگ وجود داشته باشد، عدد b رنگی گرافg می گویند و آن را با phi (g) نمایش می دهند. گ...
مقدمه بک اولین کسی بود که در سال 1988 مفهوم گراف مقسومعلیه صفر یک حلقهی r را تحت عنوان رنگآمیزی رئوس بیان کرد. او اعضای حلقهی r را به عنوان مجموعه رئوس یک گراف در نظر گرفت. همچنین دو عضو متمایز x,y?r با هم مجاورند اگر و تنها اگر xy=0. بک عدد رنگی (کمترین تعداد رنگی که میتوان با آن اعضای حلقهی r را رنگآمیزی کرد، در حالتی که دو رأس مجاور دارای رنگهای متفاوتی باشند.) و خوشه (کوچکترین ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید