نتایج جستجو برای: دقیقا غیر پوچ توان بوسیله متناهی
تعداد نتایج: 164690 فیلتر نتایج به سال:
فرض کنیم g یک گروه باشد و paut(g) مجموعه ی متشکل از خودریختی های چندجمله ای g باشد. در این صورت زیرگروهی aut(g) را که توسط paut(g) تولید شود، با نماد (paut) ?(g)نمایش می دهیم. در این پایان نامه مطالب ذیل مورد بررسی قرار می گیرد. اگر g گروهی پوچ توان از رده ی c در آبلی باشد که در آن c یک عدد صحیح و مثبت است، آنگاه (paut) ?(g) پوچ توان از رده ی حداکثر c-1 در فراآبلی می باشد. اگر g حل پذیر از...
در این پایان نامه، همه حلقه ها جابجایی و یکدار و همه مدول ها یکانی در نظر گرفته می شود. فرض کنید r یک حلقه و m یک r – مدول باشد. مدول m را ضربی می نامیم هرگاه به ازای هر زیرمدول n از m، ایده آل i از rموجود باشد به طوریکه n=im. هدف این پایان نامه بررسی مدول های ضربی منظم ون نویمن است. ابتدا مقدمه ای در مورد زیرمدول های پوچ توان که تعمیمی از ایده آل های پوچ توان است بیان می شود و نشان می دهیم م...
چکیده ندارد.
در این پایان نامه با مطالعه حلقه های آرمنداریز به بررسی ویژگی آرمنداریز در حلقه هم حاصل ضرب از k-جبرها می پردازیم. سپس حلقه های پوچ آرمنداریز را که تعمیمی از حلقه های آرمنداریز می باشند مورد مطالعه قرار می دهیم و ساختار مجموعه ای از عناصر پوچ توان در حلقه های آرمنداریز و پوچ آرمنداریز را بررسی می نماییم. هم چنین به بررسی توسیع چند جمله ای حلقه های پوچ آرمنداریز می پردازیم. در پایان با مطالعه حل...
در این مقاله اثبات شده که مدول m در شرط زنجیر صعودی (به ترتیب. شرط زنجیر نزولی) روی غیر جمعوندها صدق می کند اگر وفقط اگر m نیم ساده یا نوتری(به ترتیب. آرتینی) باشد . روی یک حلقه نوتری راست،- r مدول راست m در شرط زنجیر صعودی روی غیر جعموندهای متناهی تولید شده صدق می کند اگر و فقط اگر m در شرط زنجیر صعودی روی غیر جمعوند ها صدق کند . هم چنین یک r – مدول راست m درشر ط زنجیر نزولی روی غیر جمعوندها...
توسیع یکدار r?t از حلقه های تعویض پذیر را یک fip- توسیع (یا یک توسیع مینیمال) می نامیم هرگاه تعداد متناهی(هیچ) حلقه مثل s که? s ?t r ، موجود باشد. در این پایان نامه بررسی می کنیم که توسیع حلقه ای r?r[u] که u عضوی پوچ توان متعلق به توسیعی از حلقه ی r است، یک fip- توسیع است اگر و تنها اگر ???? u??? باشد. حلقه هایی که تعداد متناهی زیر حلقه دارند نیز مورد بررسی قرار می گیرند.
قضیه کلاینیکه شیروکف و تعمیمهای آن خاصیتی از برد نگاشت هایی موسوم به اشتقاق را بیان می کنند که با پیوستگی این نگاشت ها درارتباط است. دراین رساله نشان می دهیم که برای اشتقاق دلخواه dاگر داشته باشیم d^2a=0 آنگاه daشبه پوچ توان است. همچنین برای اشتقاق پیوسته dاگر داشته باشیم ada=da.aآنگاه daشبه پوچ توان است. و در پایان یک حالت موضعی از این قضیه اثبات می شود.
چکیده: ماتریس? را پوچ توان می نامیم هرگاه به ازای عددطبیعی مانند n داشته باشیم . به ازای هر ماتریس ? روی فضای هیلبرت ، شعاع عددی و برد عددی را به ترتیب صورت a^n=0 w(a)= max{ |?|:??w(a)} و w(a)={:x?h ,|(|x|)|=1} تعریف می کنیم. یک ماتریس پوچ توان3×3 دارای بردعددی دایره ای است اگرو فقط اگر محاسبه می شود.w(a)=?(tr(a^* a))/2 شعاع عددی آن با فرمول و ?tr(a^* a)?^2=0 یک ماتریس پوچ توان...
فرض کنید g یک گروه باشد، a و bزیرگروههایی از آن و ??x?g. در این صورت دو زیرگروه a و x ،b -گردش پذیرند، اگر x شامل عنصری مانند x باشد به طوری که ab^x=b^x a. در این پایان نامه مشخصه هایی از کلاس گروههای حل پذیر، ابرحل پذیر و پوچ توان متناهی را بررسی می کنیم.
فرض کنید p یک عدد اول است. یک حدس قدیمی بیان می کند که هر p-گروه غیرآبلی متناهی یک خودریختی غیرداخلی از مرتبه p دارد. حال فرض کنید g یک p-گروه غیرآبلی متناهی است. در این پایان نامه درستی حدس را در هر یک از حالت های زیر نشان می دهیم. 1. (((?(g)?cg(z(?(g. 2. g یک p-گروه منظم غیر آبلی باشد. 3. 2=p و g از رده ی پوچ توانی 2 باشد. در حقیقت ما نتایج زیر را ثابت می کنیم. 1. فرض کنید g یک p-گروه ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید