نتایج جستجو برای: بعد کوهمولوژی
تعداد نتایج: 90968 فیلتر نتایج به سال:
در این پایان نامه i یک ایده آل از r و m یک r-مدول است. هدف، اثبات قضایای زیر است: 1)فرض کنیم r حلقه موضعی و p ایده آل اول از r و n>=0 یک عدد صحیح باشد. ثابت می کنیم hii(m) برای هرi<n،آرتینی است اگر و فقط اگر hii(m))p برای هر i<n آرتینی باشد. 2) f-عمق i نسبت به m کوچکترین عدد صحیح مانند r است که مدول کوهمولوژی موضعی ( hri(m برای هر i<n آرتینی باشد. 3)یک اثبات ساده برای i-هم متناهی بودن...
قضیه صفر شدن هارتشورن - لیختنبام footnote{-lichtenbaum hartshorne }یکی از مهم ترین نتایج در زمینه مدول های کوهمولوژی موضعی است. چندین اثبات ازاین قضیه وجود دارد؛ برای مثال cite{bh2}, cite{cs} و cite{sc1}را ببینید. همچنین، تعمیم های زیادی ازاین قضیه وجود دارد.دیوانی آذر، نقی پور و طوسی در cite{dnt} آن را به کوهمولوژی موضعی با محمل در زیرمجموعه های بسته تحت تخصیص توسیع داده اند. تاکاهاشی foo...
فرض می کنیم r یک حلقه موضعی (نوتری) و جابجایی، i یک ایده آلی از r و m، n دو -r مدول با تولید متناهی باشند. پس از بررسی خواص اساسی مدولهای h_{i}^{i}(m,n) نشان می دهیم که f-depth (i+ann_{r}(m),n) = inf{ i?n_{0 | نیست آرتینیh_{i}^{i}(m,n)} سپس فرض می کنیم t یک عدد صحیح مثبت باشد. نشان می دهیم: (1) اگر برای هر i<t ...
در ابتدا با ارائه مفهوم رشته های منظم تعمیم یافته و ویژگی های آن به معرفی مفهوم عمق تعمیم یافته یک ایده آل پرداخته ایم. سپس ارتباط مفهوم عمق تعمیم یافته یک ایده آل را با مدول های کوهمولوژی موضعی از قبیل صفر شدن، آرتینی و متناهی بودن محمل آن، بیان و اثبات کرده ایم. با فرض اینکه k یک عدد صحیح بزرگتر یا مساوی با 1- باشد مفهوک k-رشته های منطم را آورده ایم. در نهایت مفهوم k-مدول های را به عنوان تعمی...
در این رساله n-امین مدول کوهمولوژی موضعی ازr-مدول m در یک زیرکاتگوری سر از کاتگوری r-مدولها از پایین (in)مطالعه می شوند. در حالت کلی عمق و رشته های منظم تعریف می شوند. رابطه آنها با کوهمولوژی موضعی نشان می دهد که مطالعه مدولهای کوهمولوژی موضعی یک r-مدول متناهی مولد از بالا در یک زیرکاتگوری سر از کاتگوری r-مدولها فقط به تکیه گاه مدول بستگی دارد.
سه نظریه کوهمولوژی با عنوانهای پیوسته، پیوسته و کراندار وضعیت* پیوسته و کراندار، برای نمایشهای نیمرگروههای توپولوژیک روی فضاهای برداری توپولوژیک خاص، تعریف می کنیم. روابط بین گروههای کوهمولوژی تعریف شده با یکدیگر و با گروههای کوهمولوژی ها خشیلد جبرهای باناخ نیمگروهی را بررسی می کنیم. مفاهیم کوهمولوژیکی میانگین پذیری جانسون و میانگین پذیر تقریبی جانسون را برای نیمگروههای توپولوژیک تعریف می کنیم....
در این رساله به بحث روی مدول های کوهمولوژی میپردازیم .و نشان میدهیم که تحت شرایط خاص ایدهال های اول وابسته i-امین مدول کوهمولوژی متناهی است
فرض کنید r یک حلقه ی نوتری جابجایی و m یک r-مدول متناهی مولد باشد. در این پایان نامه نشان خواهیم داد که اگر برای یک عدد صحیح t ، به ازای هر i<t، h_a^i (m)، -مین مدول کوهمولوژی موضعی نسبت به ایده آل a متناهی مولد باشد آنگاه به ازای هر عضو a-فیلتر رشته ی منظم مانند که در توانهای به اندازهی کافی بزرگ a قرار دارد و هر i<t-1، داریم: h_a^i (m/xm)?h_a^i (m)? h_a^(i+1) (m).
در این پایان نامه رفتار همولوژیکی مدول نیمه دوگان را بررسی میکنیم. هدف ما برقراری ارتباط بین کوهمولوژی نسبی نسبت به کلاس c_تصویری و c_تزریقیها و کوهمولوژی مطلق میباشد. لذا در ابتدا مفهوم کوهمولوژی نسبی نسبت به کلاس دلخواهی از r مدول ها را بیان نموده و به مطالعه مدول نیمه دوگان می پزدازیم.همچنین کلاس باس و آسلاندر و کلاس c تصویری و تزریقی ها را نسبت به مدول نیمه دوگان c معرفی کرده و ارتباط بین آ...
فرض کنیم r حلقه ای نوتری و جابه جایی و m، r- مدولی با تولید متناهی باشد ابتدا با استفاده از ویژگی های m- رشته مطلق با بعد بزرگتر از s، درباره متناهی بودن مجموعه بحث می کنیم. سپس با اضافه کردن شرط موضعی به حلقه r ، نشان می دهیم برابر کمترین مقدار عدد صحیح r است به طوری که مدول کوهمولوژی موضعی تعمیم یافته آرتینی نباشد. در خاتمه با در نظر گرفتن عدد صحیح برای هر درباره آرتینین بودن بحث می کنیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید