نتایج جستجو برای: الگوریتم k means
تعداد نتایج: 723945 فیلتر نتایج به سال:
The k-means++ seeding algorithm is one of the most popular algorithms that is used for finding the initial k centers when using the k-means heuristic. The algorithm is a simple sampling procedure and can be described as follows: Pick the first center randomly from among the given points. For i > 1, pick a point to be the i center with probability proportional to the square of the Euclidean dist...
Clustering sets of histograms has become popular thanks to the success of the generic method of bag-of-X used in text categorization and in visual categorization applications. In this paper, we investigate the use of a parametric family of distortion measures, called the α-divergences, for clustering histograms. Since it usually makes sense to deal with symmetric divergences in information retr...
Much work has sought to discern the different types of cloud regimes, typically via Euclidean k-means clustering of histograms. However, these methods ignore the underlying similarity structure of cloud types. Wasserstein k-means clustering is a promising candidate for utilizing this structure during clustering, but existing algorithms do not scale well and lack the quality guarantees of the Eu...
Customer classification using k-means algorithm for optimizing the transportation plans is one of the most interesting subjects in the Customer Relationship Management context. In this paper, the real-world data and information for a spare-parts distribution company (ISACO) during the past 36 months has been investigated and these figures have been evaluated using k-means tool developed for spa...
امروزه صنعت پوشاک و مد صنعتی جهانی است و اکثر کشورها روی این صنعت سرمایه گذاری می کنند. در سالهای اخیر با گسترش تجارت الکترونیک و با توجه به مزیت های آن مثل قابل استفاده بودن کالاها با هزینه کمتر، انتخاب گسترده تر و صرفه جویی در زمان، انبوه مردم مایحتاج خود را از وبگاه ها و فروشگاه های اینترنتی به جای مغازه ها تهیه می کنند. این موضوع، نیاز به سامانه ای را ایجاد کرده که بتواند پوشاک را شناسایی و...
We prove in this paper that the expected value of the objective function of the k-means++ algorithm for samples converges to population expected value. As k-means++, for samples, provides with constant factor approximation for k-means objectives, such an approximation can be achieved for the population with increase of the sample size. This result is of potential practical relevance when one is...
This is the Supplementary Information to Paper ”k-variates++: more pluses in the kmeans++”, appearing in the proceedings of ICML 2016. Notation “main file” indicates reference to the paper.
We present a new clustering algorithm called k-means-u* which in many cases is able to significantly improve the clusterings found by k-means++, the current de-facto standard for clustering in Euclidean spaces. First we introduce the k-means-u algorithm which starts from a result of k-means++ and attempts to improve it with a sequence of non-local “jumps” alternated by runs of standard k-means....
The k-means++ seeding algorithm is one of the most popular algorithms that is used for finding the initial k centers when using the k-means heuristic. The algorithm is a simple sampling procedure and can be described as follows: Pick the first center randomly from the given points. For i > 1, pick a point to be the i center with probability proportional to the square of the Euclidean distance o...
Even though virtualization provides a lot of advantages in cloud computing, it does not provide effective performance isolation between the virtualization machines. In other words, the performance may get affected due the interferences caused by co-virtual machines. This can be achieved by the proper management of resource allocations between the Virtual Machines running simultaneously. This pa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید