نتایج جستجو برای: θ lau product of banach algebras

تعداد نتایج: 21194518  

2000
MASSOUD AMINI ALIREZA MEDGHALCHI

We introduce the notion of the Fourier and Fouier-Stieltjes algebra of a topological ∗-semigroup and show that these are commutative Banach algebras. For a class of foundation semigroups, we show that these are preduals of von Neumann algebras. 1. Definitions and Notations Let S be a locally compact topological semigroup and M(S) be the Banach algebra of all bounded regular Borel measures μ on ...

In this paper,  pseudo-amenability and pseudo-Connes amenability of weighted semigroup algebra $ell^1(S,omega)$ are studied. It is proved that pseudo-Connes amenability and pseudo-amenability of weighted group algebra $ell^1(G,omega)$ are the same. Examples are given to show that the class of $sigma$-Connes amenable dual Banach algebras is larger than that of Connes amenable dual Banach algebras.

Journal: :journal of linear and topological algebra (jlta) 0
h rahimi department of mathematics, islamic azad university, central tehran branch, po. code 13185-768, tehran, iran. e tahmasebi department of mathematics, islamic azad university, central tehran branch, po. code 13185-768, tehran, iran.

in this paper we investigate some hereditary properties of amenability modulo an ideal of banach algebras. we show that if (e ) is a bounded approximate identity modulo i of a banach algebra a and x is a neo-unital modulo i, then (e ) is a bounded approximate identity for x. moreover we show that amenability modulo an ideal of a banach algebra a can be only considered by the neo-unital modulo...

E. Tahmasebi H. Rahimi,

In this paper we investigate some hereditary properties of amenability modulo an ideal of Banach algebras. We show that if $(e_alpha)_alpha$ is a bounded approximate identity modulo I of a Banach algebra A and X is a neo-unital modulo I, then $(e_alpha)_alpha$ is a bounded approximate identity for X. Moreover we show that amenability modulo an ideal of a Banach algebra A can be only considered ...

Journal: :bulletin of the iranian mathematical society 2011
a. r. medghalchi m. h. sattari t. yazdanpanah

Journal: :bulletin of the iranian mathematical society 2011
t. ghasemi honary

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید