نتایج جستجو برای: weighted bergman space
تعداد نتایج: 588303 فیلتر نتایج به سال:
In this note we consider the hyponormality of Toeplitz operators Tφ on the Weighted Bergman space Aα(D) with symbol in the class of functions f + g with polynomials f and g of degree 2. Mathematics subject classification (2010): 47B20, 47B35.
Consider Hankel operators Hf on the weighted Bergman space L 2 a(B, dvα). In this paper we characterize the membership of (H∗ fHf ) s/2 = |Hf | in the norm ideal CΦ, where 0 < s ≤ 1 and the symmetric gauge function Φ is allowed to be arbitrary.
We compute the Dixmier trace of pseudo-Toeplitz operators on the Fock space. As an application we find a formula for the Dixmier trace of the product of commutators of Toeplitz operators on the Hardy and weighted Bergman spaces on the unit ball of C. This generalizes an earlier work of Helton-Howe for the usual trace of the anti-symmetrization of Toeplitz operators.
We prove upper pointwise estimates for the Bergman kernel of the weighted Fock space of entire functions in L2(e−2φ) where φ is a subharmonic function with ∆φ a doubling measure. We derive estimates for the canonical solution operator to the inhomogeneous CauchyRiemann equation and we characterize the compactness of this operator in terms of ∆φ.
This note completely describes the bounded or compact Riemann-Stieltjes integral operators T g acting between the weighted Bergman space pairs (A p α , A q β) in terms of particular regularities of the holomorphic symbols g on the open unit ball of C n .
Let = G=K be a bounded symmetric domain in a complex vector space V with the Lebesgue measure dm(z) and the Bergman reproducing kernel h(z; w) ?p. Let dd (z) = h(z; z) dm(z), > ?1, be the weighted measure on. The group G acts unitarily on the space L 2 ((;) via change of variables together with a multiplier. We consider the discrete parts, also called the relative discrete series, in the irredu...
Composition operators between weighted Bergman spaces with a smaller exponent in the target space are studied. An integrability condition on a generalized Nevanlinna counting function of the inducing map is shown to characterize both compactness and boundedness of such an operator. Composition operators mapping into the Hardy spaces are included by making particular choices for the weights.
We apply the Bekollé–Bonami estimate for (positive) Bergman projection on weighted $$L^p$$ spaces unit disk. As consequences, we obtain boundedness of Sobolev space symmetrized bidisk. also improve result unweighted bidisk in Chen et al. (J Funct Anal 279(2):108522, 2020).
The definition of classical holomorphic function spaces such as the Hardy space or Dirichlet on Hartogs triangle is not canonical. In this paper we introduce a natural family which includes some weighted Bergman spaces, candidate and space. For study L p mapping properties Szeg? projection respectively, whereas for prove it isometric to bidisc.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید