نتایج جستجو برای: vertextransitive graphs
تعداد نتایج: 97281 فیلتر نتایج به سال:
let $n$ be any positive integer, the friendship graph $f_n$ consists of $n$ edge-disjoint triangles that all of them meeting in one vertex. a graph $g$ is called cospectral with a graph $h$ if their adjacency matrices have the same eigenvalues. recently in href{http://arxiv.org/pdf/1310.6529v1.pdf}{http://arxiv.org/pdf/1310.6529v1.pdf} it is proved that if $g$ is any graph cospectral with $f_n$...
Let Γ be a graph and let G be a group of automorphisms of Γ. The graph Γ is called G-normal if G is normal in the automorphism group of Γ. Let T be a finite non-abelian simple group and let G = T l with l ≥ 1. In this paper we prove that if every connected pentavalent symmetric T -vertex-transitive graph is T -normal, then every connected pentavalent symmetric G-vertex-transitive graph is G-nor...
let g be a (p, q) graph. let f : v (g) → {1, 2, . . . , k} be a map. for each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of g if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....
recently, e. m'{a}v{c}ajov'{a} and m. v{s}koviera proved that every bidirected eulerian graph which admits a nowhere zero flow, admits a nowhere zero $4$-flow. this result shows the validity of bouchet's nowhere zero conjecture for eulerian bidirected graphs. in this paper we prove the same theorem in a different terminology and with a short and simple proof. more precisely, we p...
in this paper we define the removable cycle that, if $im$ is a class of graphs, $gin im$, the cycle $c$ in $g$ is called removable if $g-e(c)in im$. the removable cycles in eulerian graphs have been studied. we characterize eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for eulerian graph to have removable cycles h...
The forgotten topological index of a molecular graph $G$ is defined as $F(G)=sum_{vin V(G)}d^{3}(v)$, where $d(u)$ denotes the degree of vertex $u$ in $G$. The first through the sixth smallest forgotten indices among all trees, the first through the third smallest forgotten indices among all connected graph with cyclomatic number $gamma=1,2$, the first through<br /...
the eccentricity connectivity index of a molecular graph g is defined as (g) = av(g)deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to othervertices of g and deg(a) is degree of vertex a. here, we compute this topological index forsome infinite classes of dendrimer graphs.
solvable graphs (also known as reachable graphs) are types of graphs that any arrangement of a specified number of agents located on the graph’s vertices can be reached from any initial arrangement through agents’ moves along the graph’s edges, while avoiding deadlocks (interceptions). in this paper, the properties of solvable graphs are investigated, and a new concept in multi agent moti...
The tenacity of an incomplete connected graph G is defined as T (G) = min{ |S|+m(G−S) ω(G−S) : S ⊂ V (G), ω(G− S) > 1}, where ω(G− S) and m(G− S), respectively, denote the number of components and the order of a largest component inG−S. This is a reasonable parameter to measure the vulnerability of networks, as it takes into account both the amount of work done to damage the network and how bad...
Topoi are known to be categories with extra properties that make them much alike the category of Sets. In a Topoi it is possible to define adequate notions of membership, elements and subobjects, power ”sets”, and finally, every Topoi has an internal logic able to justify any reasoning carried inside it. Most of the cases, this logic is not Classical (Boolean). The general logic for the Topoi i...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید