نتایج جستجو برای: unsymmetric lanczos
تعداد نتایج: 1867 فیلتر نتایج به سال:
The nonsymmetric Lanczos method has recently received signiicant attention as a model reduction technique for large-scale systems. Unfortunately, the Lanczos method may produce an unstable partial realization for a given, stable system. To remedy this situation, inexpensive implicit restarts are developed which can be employed to stabilize the Lanczos generated model.
This paper describes a graphics processing unit (GPU) implementation of the Filtered Lanczos Procedure for the solution of large, sparse, symmetric eigenvalue problems. The Filtered Lanczos Procedure uses a carefully chosen polynomial spectral transformation to accelerate the convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particula...
In this text, we present a generalisation of the idea of the Implicitly Restarted Arnoldi method to the nonsymmetric Lanczos algorithm, using the two-sided Gram-Schmidt process or using a full Lanczos tridi-agonalisation. The Implicitly Restarted Lanczos method can be combined with an implicit lter. It can also be used in case of breakdown and ooers an alternative for look-ahead.
The Lanczos algorithm is widely used for solving large sparse symmetric eigenvalue problems when only a few eigenvalues from the spectrum are needed. Due to sparse matrix-vector multiplications and frequent synchronization, the algorithm is communication intensive leading to poor performance on parallel computers and modern cache-based processors. The Communication-Avoiding Lanczos algorithm [H...
An implicitly restarted symplectic Lanczos method for the symplectic eigenvalue problem is presented. The Lanczos vectors are constructed to form a symplectic basis. The inherent numerical diiculties of the symplectic Lanczos method are addressed by inexpensive implicit restarts. The method is used to compute some eigenvalues and eigenvectors of large and sparse symplectic matrices.
We show in this text how the idea of the Implicitly Restarted Arnoldi method can be generalised to the non-symmetric Lanczos algorithm, using the two-sided Gram-Schmidt process or using a Lanczos tridiagonalisation. The implicitly restarted Lanczos method can be combined with an implicit lter. It can also be used in case of breakdown and ooers an alternative for look-ahead.
The Lanczos method is often used to solve a large and sparse symmetric matrix eigenvalue problem. There is a well-established convergence theory that produces bounds to predict the rates of convergence good for a few extreme eigenpairs. These bounds suggest at least linear convergence in terms of the number of Lanczos steps, assuming there are gaps between individual eigenvalues. In practice, o...
In this paper the new theoretical error bounds on the convergence of the Lanczos and the block-Lanczos methods are established based on results given by Saad. Similar further inequalities are found for the eigenele-ments by using bounds on the acute angle between the exact eigenvectors and the Krylov subspace spanned by x0; Ax0; ; A n?1 x0, where x0 is the initial starting vector of the process...
We establish rigourously the scaling properties of the Lanczos process applied to an arbitrary extensive Many-Body System which is carried to convergence n → ∞ and the thermodynamic limit N → ∞ taken. In this limit the solution for the limiting Lanczos coefficients are found exactly and generally through two equivalent sets of equations, given initial knowledge of the exact cumulant generating ...
For real symmetric eigenvalue problems, there are a number of algorithms that are mathematically equivalent, for example, the Lanczos algorithm, the Arnoldi method and the unpreconditioned Davidson method. The Lanczos algorithm is often preferred because it uses signiicantly fewer arithmetic operations per iteration. To limit the maximum memory usage, these algorithms are often restarted. In re...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید