نتایج جستجو برای: ulam
تعداد نتایج: 2043 فیلتر نتایج به سال:
Using the fixed point method, we prove the Hyers–Ulam stability of the Cauchy–Jensen functional equation and of the Cauchy–Jensen functional inequality in fuzzy Banach ∗-algebras and in induced fuzzy C-algebras. Furthermore, using the fixed point method, we prove the Hyers–Ulam stability of fuzzy ∗-derivations in fuzzy Banach ∗-algebras and in induced fuzzy C-algebras. Published by Elsevier Ltd
21–24 June 2017, Lviv,Ukraine Invited Lectures L 1 Stanisław Ulam: life,mathematics, and science M. Zarichnyi Department ofMechanics andMathematics, Ivan Franko Lviv University, Universytetska Str. 1, Lviv 79000, Ukraine E–mail:[email protected] [e talk is devoted to a (mathematical and scientiýc) biography of Stanisław Ulam. A special attention will be paid to Ulam’s mathematical achievements.
The Borsuk-Ulam theorem has many applications in algebraic topology, algebraic geomtry, and combinatorics. Here we study some combinatorial consequences, typically asserting the existence of a certain combinatorial object. An interesting aspect is the computational complexity of algorithms that search for the object. The study of these algorithms is facilitated by direct combinatorial existence...
Abstract In this paper, a class of nonlinear ? -Hilfer fractional integrodifferential coupled systems on bounded domain is investigated. The existence and uniqueness results for the are proved based contraction mapping principle. Moreover, Ulam–Hyers–Rassias, Ulam–Hyers, semi-Ulam–Hyers–Rassias stabilities to initial value problem obtained.
The Monster group, the biggest of the sporadic groups, is equipped with the highest known number of dimensions and symmetries. Taking into account variants of the Borsuk–Ulam theorem and a novel topological approach cast in a physical fashion that has the potential to be operationalized, the universe can be conceived as a lower-dimensional manifold encompassed in the Monster group. Our universe...
In 1952, Ky Fan proved a combinatorial theorem generalizing the Borsuk-Ulam theorem stating that there is no Z2-equivariant map from the d-dimensional sphere S to the (d − 1)-dimensional sphere Sd−1. The aim of the present paper is to provide the same kind of combinatorial theorem for Dold's theorem, which is a generalization of the Borsuk-Ulam theorem when Z2 is replaced by Zq, and the spheres...
The Sperner and Tucker lemmas are combinatorial analogous of the Brouwer and Borsuk Ulam theorems with many useful applications. These classic lemmas are concerning labellings of triangulated discs and spheres. In this paper we show that discs and spheres can be substituted by large classes of manifolds with or without boundary.
We obtain the Hyers-Ulam stability and modified Hyers-Ulam stability for the equations of the formg(x+p)=φ(x)g(x) in the following settings: |g(x+p)−φ(x)g(x)| ≤ δ, |g(x+p)−φ(x)g(x)| ≤φ(x), |(g(x+p)/φ(x)g(x))−1| ≤ψ(x). As a consequence we obtain the stability theorems for the gamma functional equation.
We use the fixed point method to prove the probabilistic Hyers–Ulam and generalized Hyers–Ulam–Rassias stability for the nonlinear equation f (x) = Φ(x, f (η(x))) where the unknown is a mapping f from a nonempty set S to a probabilistic metric space (X ,F,TM) and Φ : S×X → X , η : S → X are two given functions. Mathematics subject classification (2000): 39B52, 39B82, 47H10, 54E70.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید