نتایج جستجو برای: trimethylaminuria
تعداد نتایج: 90 فیلتر نتایج به سال:
The relationship between biological network architectures and evolution is unclear. Within the phylum nematoda olfaction represents a critical survival tool. For nematodes, olfaction contributes to multiple processes including the finding of food, hosts, and reproductive partners, making developmental decisions, and evading predators. Here we examine a dynamic nematode odor genetic network to i...
BACKGROUND Possibly due to the small size of the olfactory bulb (OB) as compared to rodents, it was generally believed that songbirds lack a well-developed sense of smell. This belief was recently revised by several studies showing that various bird species, including passerines, use olfaction in many respects of life. During courtship and nest building, male European starlings (Sturnus vulgari...
Trimethylaminuria (TMAU) is a metabolic disorder characterized by the inability to oxidize and convert dietary-derived trimethylamine (TMA) to trimethylamine N-oxide (TMAO). This disorder has been relatively well-documented in European and North American populations, but no reports have appeared regarding patients in Japan. We identified seven Japanese individuals that showed a low metabolic ca...
The reduced capacity of flavin-containing monooxygenase 3 (FMO3) to N-oxidize trimethylamine (TMA) is believed to cause a metabolic disorder. The aim of this study was to investigate the inter-individual variations of FMO3. Genomic DNA of case subjects that showed only 10-20% of FMO3 metabolic capacity among self-reported trimethylaminuria Japanese volunteers was sequenced. Functional analysis ...
Trimethylaminuria (TMAuria), known as "fish odor syndrome," is a congenital metabolic disorder characterized by an odor resembling that of rotting fish. This odor is caused by the secretion of trimethylamine (TMA) in the breath, sweat, and body secretions and the excretion of TMA along with urine. TMAuria is an autosomal recessive disorder caused by mutations in flavin-containing monooxygenase ...
Trimethylamine (TMA) is produced by gut bacteria from dietary ingredients. In individuals with a hereditary defect in flavin-containing monooxygenase 3, bacterial TMA production is believed to contribute to the symptoms of trimethylaminuria (TMAU; fish-odor syndrome). Intestinal microbiota TMA metabolism may also modulate atherosclerosis risk by affecting trimethylamine oxide (TMAO) production ...
Flavin-containing monooxygenase 3 (FMO3) is known primarily as an enzyme involved in the metabolism of therapeutic drugs. On a daily basis, however, we are exposed to one of the most abundant substrates of the enzyme trimethylamine (TMA), which is released from various dietary components by the action of gut bacteria. FMO3 converts the odorous TMA to nonodorous TMA N-oxide (TMAO), which is excr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید