نتایج جستجو برای: topological functors

تعداد نتایج: 72488  

2017
Wolfgang Bertram WOLFGANG BERTRAM

We define a simplicial differential calculus by generalizing divided differences from the case of curves to the case of general maps, defined on general topological vector spaces, or even on modules over a topological ring K. This calculus has the advantage that the number of evaluation points grows linearly with the degree, and not exponentially as in the classical, “cubic” approach. In partic...

Journal: :Applied Categorical Structures 2004
Maria Manuel Clementino Dirk Hofmann Walter Tholen

For a complete lattice V which, as a category, is monoidal closed, and for a suitable Setmonad T we consider (T,V)-algebras and introduce (T,V)-proalgebras, in generalization of Lawvere’s presentation of metric spaces and Barr’s presentation of topological spaces. In this lax-algebraic setting, uniform spaces appear as proalgebras. Since the corresponding categories behave functorially both in ...

2008
Volodymyr Lyubashenko

We define natural A ∞ -transformations and construct A ∞ -category of A ∞ -functors. The notion of non-strict units in an A ∞ -category is introduced. The 2-category of (unital) A ∞ -categories, (unital) functors and transformations is described. The study of higher homotopy associativity conditions for topological spaces began with Stasheff’s article [Sta63, I]. In a sequel to this paper [Sta6...

2008
Volodymyr Lyubashenko

We define natural A∞-transformations and construct A∞-category of A∞-functors. The notion of non-strict units in an A∞-category is introduced. The 2-category of (unital) A∞-categories, (unital) functors and transformations is described. The study of higher homotopy associativity conditions for topological spaces began with Stasheff’s article [Sta63, I]. In a sequel to this paper [Sta63, II] Sta...

2008
Volodymyr Lyubashenko

We define natural A ∞ -transformations and construct A ∞ -category of A ∞ -functors. The notion of non-strict units in an A ∞ -category is introduced. The 2-category of (unital) A ∞ -categories, (unital) functors and transformations is described. The study of higher homotopy associativity conditions for topological spaces began with Stasheff’s article [Sta63, I]. In a sequel to this paper [Sta6...

2009
Volodymyr Lyubashenko

We define natural A ∞ -transformations and construct A ∞ -category of A ∞ -functors. The notion of non-strict units in an A ∞ -category is introduced. The 2-category of (unital) A ∞ -categories, (unital) functors and transformations is described. The study of higher homotopy associativity conditions for topological spaces began with Stasheff’s article [Sta63, I]. In a sequel to this paper [Sta6...

Journal: :Advances in Mathematics 2021

For classical dynamical systems, the polynomial entropy serves as a refined invariant of topological entropy. In setting categorical that is, triangulated categories endowed with an endofunctor, we develop theory entropy, refining defined by Dimitrov-Haiden-Katzarkov-Kontsevich. We justify this notion showing for automorphism smooth projective variety, pullback functor on derived category coinc...

In this paper, we give three functors $mathfrak{P}$, $[cdot]_K$ and $mathfrak{F}$ on the category of C$^ast$-algebras. The functor $mathfrak{P}$ assigns to each C$^ast$-algebra $mathcal{A}$ a pre-C$^ast$-algebra $mathfrak{P}(mathcal{A})$ with completion $[mathcal{A}]_K$. The functor $[cdot]_K$ assigns to each C$^ast$-algebra $mathcal{A}$ the Cauchy extension $[mathcal{A}]_K$ of $mathcal{A}$ by ...

2017
IGOR KRIZ

This is a course in algebraic topology for anyone who has seen the fundamental group and homology. Traditionally (20 years ago), the syllabus included cohomology, the universal coefficient theorem, products, Tor and Ext and duality. We will cover all those topics, while also building a modern framework of derived categories and derived functors using the Cartan–Eilenberg method. We will apply t...

2012
BENNO VAN DEN BERG CHRIS HEUNEN

Any functor from the category of C*-algebras to the category of locales that assigns to each commutative C*-algebra its Gelfand spectrum must be trivial on algebras of n-by-n matrices for n ≥ 3. This obstruction also applies to other spectra such as those named after Zariski, Stone, and Pierce. We extend these no-go results to functors with values in (ringed) topological spaces, (ringed) topose...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید