نتایج جستجو برای: thin shell theory
تعداد نتایج: 947781 فیلتر نتایج به سال:
The classical shell theory, first-order shear deformation theory, and third-order shear deformation theory are employed to study the natural frequencies of functionally graded cylindrical shells. The governing equations of motion describing the vibration behavior of functionally graded cylindrical shells are derived by Hamilton’s principle. Resulting equations are solved using the Navier-type s...
Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In ...
The aim of this paper is to determine the critical buckling load for simply supported thin shallow spherical shells made of functionally graded material (FGM) subjected to uniform external pressure. A metal-ceramic functionally graded (FG) shell with a power law distribution for volume fraction is considered, where its properties vary gradually through the shell thickness direction from pure me...
It is well known that it is very difficult to manufacture perfect thin cylindrical shell. Initial geometrical imperfections existing in the shell structure is one of the main determining factor for load bearing capacity of thin cylindrical shell under uniform lateral pressure. As these imperfections are random, the strength of same size cylindrical shell will also random and a statistical metho...
The problem of a thin spherical linearly-elastic shell, perfectly bonded to an infinite linearly-elastic medium is considered. A constant axisymmetric stress field is applied at infinity in the matrix, and the displacement and stress fields in the shell and matrix are evaluated by means of harmonic potential functions. In order to examine the stability of this solution, the buckling problem of ...
Efficient light management in optoelectronic devices requires nanosystems where high optical qualities coincide with suitable device integration. The requirement of chemical and electrical passivation for integrating nanostrutures in e.g. thin film solar cells points towards the use of insulating and stable dielectric material, which however has to provide high scattering and near-fields as wel...
Thin plate structures are more widely used in many engineering applications as one of the structural members. Generally, buckling strength of thin shell structures is the ultimate load carrying capacity of these structures. The presence of cracks in a thin shell structure can considerably affect its load carrying capacity. Hence, in this work, static buckling strength of a thin square plate wit...
Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependen...
in this study, thermo-mechanical nonlinear vibration of a polyethylene (pe) cylindrical shell embedded in an elastic foundation was investigated. the shell is reinforced by armchair carbon nanotubes (cnts) where characteristics of the equivalent composite being determined using mori-tanaka model. the elastic medium is simulated using the spring constant of the winkler-type, . employing nonline...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید