نتایج جستجو برای: term forecasting purposes
تعداد نتایج: 700517 فیلتر نتایج به سال:
Electrical load forecasting is well-known as one of the most important challenges in the management of electrical supply and demand and has been studied extensively. Electrical load forecasting is conducted at different time scales from short-term, medium-term and long-term load forecasting. Adaptive neuro-fuzzy inference system is a model that combines fuzzy logic and adaptive neuro system and...
Abstract—This article presents the review of the computing models applied for solving problems of midterm load forecasting. The load forecasting results can be used in electricity generation such as energy reservation and maintenance scheduling. Principle, strategy and results of short term, midterm, and long term load forecasting using statistic methods and artificial intelligence technology...
Accurate models for electric power load forecasting are essential to the operation and planning of a power utility company. Load forecasting helps electric utility to make important decisions on trading of power, load switching, and infrastructure development. Load forecasts are extremely important for power utilizes ISOs, financial institutions, and other stakeholder of power sector. Short ter...
the changes in todays world organization, to the extent that instability can be characterized with the most stable organizations called this afternoon. if you ever change management component, an additional value to the organization was considered, today, these elements become the foundation the organization is survival. the definition of the entrepreneur to identify opportunities to exploit a...
This paper presents a novel hybrid method for short-term load forecasting. The system comprises of two artificial neural networks (ANN), assembled in a hierarchical order. The first ANN is a multilayer perceptron (MLP) which functions as integrated load predictor (ILP) for the forecasting day. The output of the ILP is then fed to another, more complex MLP, which acts as an hourly load predictor...
In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecas...
Quality spatial load forecasting is a major prerequisite for energy distribution systems planning. The load evolution outline depends on the urban expansion and its land usage. This paper presents a methodology for knowledge extraction of the data provided by a GIS (Geographical Information Systems) platform. The main goal consists of developing studies that lead to the understanding of the inf...
Artificial Neural Network has been popularly used for forecasting purposes over the past. There are some innate problems in neural network such as indefinite configuration, architecture, and learning issues, etc. To vanquish these problems, Generalized Neural Network (GNN) has been used. This paper illustrates the development of Quantum GA-GNN method for forecasting of solar photovoltaic system...
A New Approach in Short-Term Prediction of the Electrical Charge with Regression Models A Case Study
The accuracy of forecasting of electrical load for the electricity industry has a vital significance in the renewal of economic structure as well as various equations including: purchasing and producing energy, load fluctuation, and the development of infrastructures. Its short-term forecasting has a significant role in designing and utilizing power systems and in the distribution systems and h...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید