نتایج جستجو برای: systems of nonlinear ordinary differential equations
تعداد نتایج: 21331989 فیلتر نتایج به سال:
The invariant subspace method is used to classify a class of systems of nonlinear dispersive evolution equations and determine their invariant subspaces and exact solutions. A crucial step is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that systems of evolution equations admit. A few examples of presenting exact solutions with generalized sepa...
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
in this paper, the numerical algorithms for solving ‘fuzzy ordinary differential equations’ are considered. a scheme based on the 4th order runge-kutta method is discussed in detail and it is followed by a complete error analysis. the algorithm is illustrated by solving some linear and nonlinear fuzzy cauchy problems.
In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...
degenerate kernel approximation method is generalized to solve hammerstein system of fredholm integral equations of the second kind. this method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. convergence analysis is investigated and on some test problems, the propo...
In this article, we use two concepts, measure of non-compactness and Meir-Keeler condensing operators. The measure of non-compactness has been applied for existence of solution nonlinear integral equations, ordinary differential equations and system of differential equations in the case of finite and infinite dimensions by some authors. Also Meir-Keeler condensing operators are shown in some pa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید