نتایج جستجو برای: strongly clean rings
تعداد نتایج: 297497 فیلتر نتایج به سال:
Throughout this paper R denotes an associative ring with identity and all modules are unitary. We use the symbol U(R) to denote the group of units of R and Id(R) the set of idempotents of R, Un(R) the set of elements which are the sum of n units of R, UΣ(R) the set of elements each of which is the sum of finitely many units in R, RE(R) (URE(R)) the set of regular (unit regular) elements of R, a...
It is shown that a commutative Bézout ring R with compact minimal prime spectrum is an elementary divisor ring if and only if so is R/L for each minimal prime ideal L. This result is obtained by using the quotient space pSpec R of the prime spectrum of the ring R modulo the equivalence generated by the inclusion. When every prime ideal contains only one minimal prime, for instance if R is arith...
An element is known a strongly nil* clean if a=e1 - e1e2 + n , where e1,e2 are idempotents and nilpotent, that commute with one another. ideal I of ring R called each element. We investigate some its fundamental features, as well relationship to the nil ideal.
A ring R is uniquely (nil) clean in case for any $a in R$ there exists a uniquely idempotent $ein R$ such that $a-e$ is invertible (nilpotent). Let $C =(A V W B)$ be the Morita Context ring. We determine conditions under which the rings $A,B$ are uniquely (nil) clean. Moreover we show that the center of a uniquely (nil) clean ring is uniquely (nil) clean.
In this paper we briey discuss Rings — an ecient lightweight library for univariate and multivariate polynomial arithmetic over arbitrary coecient rings. Basic algebra, GCDs and factorization of polynomials are implemented with the use of modern asymptotically fast algorithms. Rings provides a clean API for algebra and a fully typed hierarchy of mathematical structures. Scala API additionall...
A ring [Formula: see text] is said to be clean if each element of can written as the sum a unit and an idempotent. weakly either or difference idempotent, feebly every text], where are orthogonal idempotents. Clearly, rings both them clean. In recent paper (J. Algebra Appl. 17 (2018) 1850111 (5 pp.)), McGoven characterized when group clean, distinct primes. this paper, we consider more general ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید