نتایج جستجو برای: sqp algorithm

تعداد نتایج: 754311  

2013
MATTHIAS HEINKENSCHLOSS DENIS RIDZAL

We introduce and analyze a trust–region sequential quadratic programming (SQP) method for the solution of smooth equality constrained optimization problems, which allows the inexact and hence iterative solution of linear systems. Iterative solution of linear systems is important in large-scale applications, such as optimization problems with partial differential equation constraints, where dire...

2014
Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson

Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that allows convergence to points satisfying certain second-order KKT conditions (SIAM J. Optim., 23(4):198...

Journal: :SIAM Journal on Optimization 2010
Alexey F. Izmailov Mikhail V. Solodov

We consider sequential quadratic programming (SQP) methods applied to optimization problems with nonlinear equality constraints and simple bounds. In particular, we propose and analyze a truncated SQP algorithm in which subproblems are solved approximately by an infeasible predictor-corrector interior-point method, followed by setting to zero some variables and some multipliers so that compleme...

2008
Nicholas I. M. Gould Daniel P. Robinson

Sequential quadratic programming (SQP) methods form a class of highly efficient algorithms for solving nonlinearly constrained optimization problems. Although second derivative information may often be calculated, there is little practical theory that justifies exact-Hessian SQP methods. In particular, the resulting quadratic programming (QP) subproblems are often nonconvex, and thus finding th...

1998
Mihai Anitescu Radu Serban

Discretization of optimal shape design problems leads to very large nonlinear optimization problems. For attaining maximum computational efficiency, a sequential quadratic programming (SQP) algorithm should achieve superlinear convergence while preserving sparsity and convexity of the resulting quadratic programs. Most classical SQP approaches violate at least one of the requirements. We show t...

Journal: :SIAM Journal on Optimization 2013
Philip E. Gill Daniel P. Robinson

Sequential quadratic programming (SQP) methods are a popular class of methods for nonlinearly constrained optimization. They are particularly effective for solving a sequence of related problems, such as those arising in mixed-integer nonlinear programming and the optimization of functions subject to differential equation constraints. Recently, there has been considerable interest in the formul...

Journal: :CoRR 2013
Hassan A. Bashir Richard Stuart Neville

Hybrid optimization algorithms have gained popularity as it has become apparent there cannot be a universal optimization strategy which is globally more beneficial than any other. Despite their popularity, hybridization frameworks require more detailed categorization regarding: the nature of the problem domain, the constituent algorithms, the coupling schema and the intended area of application...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید