نتایج جستجو برای: sparse optimization
تعداد نتایج: 371252 فیلتر نتایج به سال:
We present a comprehensive framework for structured sparse coding and modeling extending the recent ideas of using learnable fast regressors to approximate exact sparse codes. For this purpose, we propose an efficient feed forward architecture derived from the iteration of the block-coordinate algorithm. This architecture approximates the exact structured sparse codes with a fraction of the com...
In this paper, we develop a randomized algorithm and theory for learning a sparse model from large-scale and high-dimensional data, which is usually formulated as an empirical risk minimization problem with a sparsity-inducing regularizer. Under the assumption that there exists a (approximately) sparse solution with high classification accuracy, we argue that the dual solution is also sparse or...
Sparse coding provides a class of algorithms for finding succinct representations of stimuli; given only unlabeled input data, it discovers basis functions that capture higher-level features in the data. However, finding sparse codes remains a very difficult computational problem. In this paper, we present efficient sparse coding algorithms that are based on iteratively solving two convex optim...
Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Recent years have seen a surge in optimization methods tailored to sparse optimization problems. In this paper, we study the complexity of stochastic convex optimization in an oracle model of computation, when the objective is optim...
Computational sparse models are drawing more and more attentions in a wide range of scientific communities including statistic signal processing and machine learning. The prominent goal of them aims at revealing the sparse structure or correlation among redundant data in terms of computational approaches, e.g. convex optimization and probability inference. The main scope of this chapter concent...
A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be equivalent to the sparse SDP relaxation by Waki et al. with relaxation order 1, except the size and sparsity of the ...
`-Graph, which learns a sparse graph over the data by sparse representation, has been demonstrated to be effective in clustering especially for high dimensional data. Although it achieves compelling performance, the sparse graph generated by `-Graph ignores the geometric information of the data by sparse representation for each datum separately. To obtain a sparse graph that is aligned to the u...
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
Sparse versus Low-Spread Representations for Signal Estimation in Noise Radu V. Balan, Justinian Rosca, Scott Rickard Siemens Corporate Research, 755 College Road East, Princeton NJ 08540 Abstract Estimation of a sparse signal representation, one with the minimum number of nonzero components, is hard. In this paper we show that for a nontrivial set of the input data the corresponding optimizati...
In this paper, we consider a multi-step version of the stochastic ADMM method with efficient guarantees for high-dimensional problems. We first analyze the simple setting, where the optimization problem consists of a loss function and a single regularizer (e.g. sparse optimization), and then extend to the multi-block setting with multiple regularizers and multiple variables (e.g. matrix decompo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید