نتایج جستجو برای: sierpinski q bitopological space
تعداد نتایج: 605225 فیلتر نتایج به سال:
The Sierpinski tetrahedron is two-dimensional with respect to fractal dimensions though it is realized in threedimensional space, and it has square projections in three orthogonal directions. We study its generalizations and present two-dimensional fractals with many square projections. One is generated from a hexagonal bipyramid which has square projections not in three but in six directions. ...
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by χ′a(G). Sierpinski graphs S(n, 3) are the graphs of the Tower of Hanoi with n disks, while Sierpinski gasket graphs Sn are the graphs naturally defined ...
The major goal of the current research is to present conception “(bi)*-neutrosophic soft limit points” in “neutrosophic Bitopological” spaces. In addition, aims give essential theorems related topic with illustrative examples
The Sierpinski triangle also known as Sierpinski gasket is one of the most interesting and the simplest fractal shapes in existence. There are many different and easy ways to generate a Sierpinski triangle. In this paper we have presented a new algorithm for generating the sierpinski gasket using complex variables.
Bilattices and d-frames are two different kinds of structures with a four-valued interpretation. Whereas d-frames were introduced with their topological semantics in mind, the theory of bilattices has a closer connection with logic. We consider a common generalisation of both structures and show that this not only still has a clear bitopological semantics, but that it also preserves most of the...
A new set of fractal multiband antennas called mod Sierpinski gaskets is presented.Mod Sierpinski fractal antennas derive from the Pascal triangle and present a log-periodic behavior, which is a consequence of their self-similarity properties.Mod Sierpinski fractal antennas constitute a generalization of the classical Sierpinski antenna.
Given any non-trivial, connected topological space X, it is possible to define an equivalence relation ∼ on it such that the topological quotient space X/ ∼ is the Sierpinski space. Locally Sierpinski spaces are generalizations of the Sierpinski space and here we address the following question. Does a statement like the one above hold if Sierpinski is replaced by (proper) locally Sierpinski ? T...
We construct spectral triples and, in particular, Dirac operators, for the algebra of continuous functions on certain compact metric spaces. The triples are countable sums of triples where each summand is based on a curve in the space. Several fractals, like a finitely summable infinite tree and the Sierpinski gasket, fit naturally within our framework. In these cases, we show that our spectral...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید