Titanium-based shape memory alloys undergo a cubic to orthorhombic martensitic transformation (β to α’’ martensite). A new easy way operating as a reconstruction of the parent microstructure is used from electron backscattered diffraction. It is shown that the electron backscattered patterns of the martensitic microstructure can be directly indexed as the parent phase in order to obtain the cor...
The electric resistance, sensitively dependent on the electronic structure and currently used to detect transformation temperatures in shape memory alloys, deserves attention also in the stress transformation domain. In fact, the electric resistance has already been investigated under increasing stress in the martensitic phase of several shape memory alloys: in this case a linear relationship i...
In this chapter, a three-dimensional phenomenological constitutive model for the simulation of shape memory alloys is introduced. The proposed macromechanical model is based on microplane theory. Microplane approach is chosen to have limited material parameters in that all of those are measurable by simple tests. User material subroutine is developed to implement the proposed model in a commerc...
In the ambit of smart materials, shape memory alloys (SMA) have emerged as a remarkable class materials capable undergoing significant changes when stimulated by external factors such mechanical, magnetic, thermal, or electrical forces [...]