نتایج جستجو برای: seidel signless laplacian eigenvalues
تعداد نتایج: 31915 فیلتر نتایج به سال:
, where deg(vi) is the sum of weights of all edges connected to vi. The signless Laplacian matrix Q(G) is defined by D(G) + A(G). We denote by 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) the eigenvalues of L(G), and by μ1(G) ≤ μ2(G) ≤ · · · ≤ μn(G) the eigenvalues of Q(G). We order the degrees of the vertices of G as d1(G) ≤ d2(G) ≤ · · · ≤ dn(G). Various bounds for the Laplacian eigenvalues of unweighte...
SLEE has various applications in a large variety of problems. The signless Laplacian Estrada index hypergraph H is defined as SLEE(H)=∑i=1neλi(Q), where λ1(Q),λ2(Q),…,λn(Q) are the eigenvalues matrix H. In this paper, we characterize unique r-uniform unicyclic hypergraphs with maximum and minimum SLEE.
In this paper, we present a sharp upper and lower bounds for the signless Laplacian spectral radius of graphs in terms of clique number. Moreover, the extremal graphs which attain the upper and lower bounds are characterized. In addition, these results disprove the two conjectures on the signless Laplacian spectral radius in [P. Hansen and C. Lucas, Bounds and conjectures for the signless Lapla...
Let G be a connected graph of order n. The remoteness of G, denoted by ρ, is the maximum average distance from a vertex to all other vertices. Let [Formula: see text], [Formula: see text] and [Formula: see text] be the distance, distance Laplacian and distance signless Laplacian eigenvalues of G, respectively. In this paper, we give lower bounds on [Formula: see text], [Formula: see text], [For...
For n ≥ 11, we determine all the unicyclic graphs on n vertices whose signless Laplacian spectral radius is at least n− 2. There are exactly sixteen such graphs and they are ordered according to their signless Laplacian spectral radii.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید