نتایج جستجو برای: scd1
تعداد نتایج: 476 فیلتر نتایج به سال:
Stearoyl-CoA desaturase (SCD) catalyzes the synthesis of oleate (C18:1) and palmitoleate (C16:1), which are the main monounsaturated fatty acids of membrane phospholipids, triglycerides, wax esters, and cholesterol esters. Previously, we showed that SCD1 deficiency elevates insulin-signaling components and downregulates protein-tyrosine phosphatase-1B (PTP-1B) in muscle, a major insulin-sensiti...
Increased de novo lipogenesis is one of the major metabolic events in cancer. In human hepatocellular carcinoma (HCC), de novo lipogenesis has been found to be increased and associated with the activation of AKT/mTOR signaling. In mice, overexpression of an activated form of AKT results in increased lipogenesis and hepatic steatosis, ultimately leading to liver tumor development. Hepatocarcinog...
Stearoyl-CoA desaturase (SCD) is a central lipogenic enzyme catalyzing the synthesis of monounsaturated fatty acids, mainly oleate (C18:1) and palmitoleate (C16:1), which are components of membrane phospholipids, triglycerides, wax esters, and cholesterol esters. Several SCD isoforms (SCD1-3) exist in the mouse. Here we show that mice with a targeted disruption of the SCD1 isoform have reduced ...
We studied adipocytes from 8-week-old control rat offspring (CON) or rat offspring subjected to maternal low (8%) protein (MLP) feeding during pregnancy/lactation, a procedure predisposing to obesity. Acute exposure to isoproterenol or adenosine enhanced PDK4 and PPARγ mRNA gene expression in CON and MLP adipocytes. Enhanced adipocyte Pdk4 expression correlated with increased PPARγ expression. ...
High-fat diet (HFD)-induced obesity and insulin resistance are associated with increased activity of the endocannabinoid/CB1 receptor (CB1R) system that promotes the hepatic expression of lipogenic genes, including stearoyl-CoA desaturase-1 (SCD1). Mice deficient in CB1R or SCD1 remain lean and insulin-sensitive on an HFD, suggesting a functional link between the two systems. The HFD-induced in...
The lipogenic gene stearoyl-CoA desaturase (SCD)1 appears to be a promising new target for obesity-related diabetes, as mice deficient in this enzyme are resistant to diet- and leptin deficiency-induced obesity. The BTBR mouse strain replicates many features of insulin resistance found in humans with excess visceral adiposity. Using the hyperinsulinemic-euglycemic clamp technique, we determined...
The discovery of Warburg effect opens a new era in anti-cancer therapy. Aerobic glycolysis is regarded as a hallmark of cancer cells and increasing literatures indicates that metabolic changes are critical for the maintenance and progression of cancer cells. Besides aerobic glycolysis, increased fatty acid synthesis is also required for the rapid growth of cancer cells, and is considered as one...
The pregnane X receptor (PXR) was previously known as a xenobiotic receptor. Several recent studies suggested that PXR also played an important role in lipid homeostasis but the underlying mechanism remains to be clearly defined. In this study, we found that rifampicin, an agonist of human PXR, induced lipid accumulation in HepG2 cells. Lipid analysis showed the total cholesterol level increase...
Cancer cells activate the biosynthesis of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in order to sustain an increasing demand for phospholipids with appropriate acyl composition during cell replication. We have previously shown that a stable knockdown of stearoyl-CoA desaturase 1 (SCD1), the main Delta9-desaturase that converts SFA into MUFA, in cancer cells decreases th...
Saturated (SFA) and monounsaturated (MUFA) fatty acids, the most abundant fatty acid species, have many divergent biological effects including the regulation of cell proliferation, programmed cell death and lipid-mediated cytotoxicity. Their distribution is regulated by Stearoyl-CoA Desaturases (SCD), the enzymes that convert SFA into MUFA. A positive correlation between high levels of tissue M...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید