نتایج جستجو برای: rook
تعداد نتایج: 423 فیلتر نتایج به سال:
We study the representation theory of the rook-Brauer algebra RBk(x), which has a of Brauer diagrams that allow for the possibility of missing edges. The Brauer, Temperley-Lieb, Motzkin, rook monoid, and symmetric group algebras are subalgebras of RBk(x). We prove that RBk(n+1) is the centralizer of the orthogonal group On(C) on tensor space and that RBk(n+1) and On(C) are in Schur-Weyl duality...
Fan Chung and Ron Graham (J. Combin. Theory Ser. B 65 (1995), 273-290) introduced the cover polynomial for a directed graph and showed that it was connected with classical rook theory. M. Dworkin (J. Combin. Theory Ser. B 71 (1997), 17-53) showed that the cover polynomial naturally factors for directed graphs associated with Ferrers boards. The authors (Adv. Appl. Math. 27 (2001), 438-481) deve...
In this paper, we study convolutional codes with a specific cyclic structure. By definition, these codes are left ideals in a certain skew polynomial ring. Using that the skew polynomial ring is isomorphic to a matrix ring we can describe the algebraic parameters of the codes in a more accessible way. We show that the existence of such codes with given algebraic parameters can be reduced to the...
Rook polynomials have been studied extensively since 1946, principally as a method for enumerating restricted permutations. However, they have also been shown to have many fruitful connections with other areas of mathematics, including graph theory, hypergeometric series, and algebraic geometry. It is known that the rook polynomial of any board can be computed recursively. [19, 18] The naturall...
Let A = (aij) be a real n n matrix with non-negative entries which are weakly increasing down columns. If B = (bij) is the n n matrix where bij := aij+z; then we conjecture that all of the roots of the permanent of B, as a polynomial in z; are real. Here we establish several special cases of the conjecture.
Let A = (a ij) be a real n n matrix with non-negative entries which are weakly increasing down columns. If B = (b ij) is the nn matrix where b ij := a ij +z; then we conjecture that all of the roots of the permanent of B, as a polynomial in z; are real. Here we establish several special cases of the conjecture.
We study in this paper the set of magic squares and their relation with some restricted permutations. Résumé. Nous étudions dans cet article l’ensemble des carrés magiques et leur relation avec des permutations spéciales.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید