نتایج جستجو برای: riordan group
تعداد نتایج: 979862 فیلتر نتایج به سال:
In this paper, we address a question posed by L. Shapiro regarding algebraic and/or combinatorial characterizations of the elements of order 2 in the Riordan group. We present two classes of combinatorial matrices having pseudo-order 2. In one class, we find generalizations of Pascal’s triangle and use some special cases to discover and prove interesting identities. In the other class, we find ...
This talk connects simple lattice path enumeration with a subgroup of the Riordan group, ordered trees, and the Faber polynomials from classical complex analysis. The main tools employed are matrix multiplication, generating functions and a few definitions from group theory and complex functions.
A Riordan array is an infinite complex matrix (ars) of a certain type (see below for exact definitions). The Riordan array formalism has been much used recently to study combinatorial questions in analysis of algorithms and other areas. Most work has been concerned with “exact” results. In this article we discuss asymptotics of such arrays. We apply general machinery for deriving asymptotics of...
We study the properties of three families of exponential Riordan arrays related to the Stirling numbers of the first and second kind. We relate these exponential Riordan arrays to the coefficients of families of orthogonal polynomials. We calculate the Hankel transforms of the moments of these orthogonal polynomials. We show that the Jacobi coefficients of two of the matrices studied satisfy ge...
Using the language of Riordan arrays, we define a notion of generalized Bernstein polynomials which are defined as elements of certain Riordan arrays. We characterize the general elements of these arrays, and examine the Hankel transform of the row sums and the first columns of these arrays. We propose conditions under which these Hankel transforms possess the Somos-4 property. We use the gener...
In this article, we introduce a family of weighted lattice paths, whose step set is {H = (1, 0), V = (0, 1), D1 = (1, 1), . . . , Dm−1 = (1,m − 1)}. Using these lattice paths, we define a family of Riordan arrays whose sum on the rising diagonal is the k-bonacci sequence. This construction generalizes the Pascal and Delannoy Riordan arrays, whose sum on the rising diagonal is the Fibonacci and ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید