نتایج جستجو برای: retinal vessel segmentation
تعداد نتایج: 225705 فیلتر نتایج به سال:
The correct segmentation of blood vessels in optical coherence tomography (OCT) images may be an important requirement for the analysis of intra-retinal layer thickness in human retinal diseases. We developed a shape model based procedure for the automatic segmentation of retinal blood vessels in spectral domain (SD)-OCT scans acquired with the Spectralis OCT system. The segmentation procedure ...
The appearance of retinal blood vessels is an important diagnostic indicator of serious disease, such as hypertension, diabetes, cardiovascular disease, and stroke. Automatic segmentation of the retinal vasculature is a primary step towards automatic assessment of the retinal blood vessel features. This paper presents an automated method for the enhancement and segmentation of blood vessels in ...
Although retinal vessel segmentation has been extensively researched, a robust and time efficient segmentation method is highly needed. This paper presents a local adaptive thresholding technique based on gray level cooccurrence matrix- (GLCM-) energy information for retinal vessel segmentation. Different thresholds were computed using GLCM-energy information. An experimental evaluation on DRIV...
This paper presents a retinal vessel segmentation method that is inspired by the human visual system and uses a Gabor filter bank. Machine learning is used to optimize the filter parameters for retinal vessel extraction. The filter responses are represented as textons and this allows the corresponding membership functions to be used as the framework for learning vessel and non-vessel classes. T...
Retinal vessel information is helpful in retinal disease screening and diagnosis. Retinal vessel segmentation provides useful information about vessels and can be used by physicians during intraocular surgery and retinal diagnostic operations. Convolutional neural networks (CNNs) are powerful tools for classification and segmentation of medical images. Complexity of CNNs makes it difficult to i...
The appearance and structure of blood vessels in retinal images have an important role in diagnosis of diseases. This paper proposes a method for automatic retinal vessel segmentation. In this work, a novel preprocessing based on local histogram equalization is used to enhance the original image then pixels are classified as vessel and nonvessel using a classifier. For this classification, spec...
Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels' appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi's filter and Gabor Wavelet filter to enh...
This paper presents Deep Retinal Image Understanding (DRIU), a unified framework of retinal image analysis that provides both retinal vessel and optic disc segmentation. We make use of deep Convolutional Neural Networks (CNNs), which have proven revolutionary in other fields of computer vision such as object detection and image classification, and we bring their power to the study of eye fundus...
Most existing deep learning based methods for vessel segmentation neglect two important aspects of retinal vessels: The orientation information vessels and the contextual whole fundus region. In this paper, we propose a robust context entangled network (OCE-Net), which can extract complex from blood vessels. To achieve orientation-aware convolution, dynamic convolution (DCOA Conv) to with multi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید