نتایج جستجو برای: reinforcement learning
تعداد نتایج: 619520 فیلتر نتایج به سال:
Learning complex skills is driven by reinforcement, which facilitates both online within-session gains and retention of the acquired skills. Yet, in ecologically relevant situations, skills are often acquired when mapping between actions and rewarding outcomes is unknown to the learning agent, resulting in reinforcement schedules of a stochastic nature. Here we trained subjects on a visuomotor ...
To behave adaptively, we must learn from the consequences of our actions. Doing so is difficult when the consequences of an action follow a delay. This introduces the problem of temporal credit assignment. When feedback follows a sequence of decisions, how should the individual assign credit to the intermediate actions that comprise the sequence? Research in reinforcement learning provides 2 ge...
This paper proposes a new fuzzy neural network based reinforcement adaptive iterative learning controller for a class of nonlinear systems. Different from some existing reinforcement learning schemes, the reinforcement adaptive iterative learning controller has the advantages of rigorous proofs without using an approximation of the plant Jacobian. The critic is appended into the reinforcement a...
A new algorithm for reinforcement learning, advantage updating, is described. Advantage updating is a direct learning technique; it does not require a model to be given or learned. It is incremental, requiring only a constant amount of calculation per time step, independent of the number of possible actions, possible outcomes from a given action, or number of states. Analysis and simulation ind...
In this paper, we propose an integrated policy learning framework that fuses iterative learning control (ILC) and reinforcement learning. Integration is accomplished at the exploration level of the reinforcement learning algorithm. The proposed algorithm combines fast convergence properties of iterative learning control and robustness of reinforcement learning. This way, the advantages of both ...
This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward net...
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
The role of external reinforcement is an issue of much debate and uncertainty in perceptual learning research. Although it is commonly acknowledged that external reinforcement, such as performance feedback, can aid in perceptual learning (M. H. Herzog & M. Fahle, 1997), there are many examples in which it is not required (K. Ball & R. Sekuler, 1987; M. Fahle, S. Edelman, & T. Poggio, 1995; A. K...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید