نتایج جستجو برای: rassias stability
تعداد نتایج: 299884 فیلتر نتایج به سال:
In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.
Using the Hyers-Ulam-Rassias stability method, weinvestigate isomorphisms in Banach algebras and derivations onBanach algebras associated with the following generalized additivefunctional inequalitybegin{eqnarray}|af(x)+bf(y)+cf(z)| le |f(alpha x+ beta y+gamma z)| .end{eqnarray}Moreover, we prove the Hyers-Ulam-Rassias stability of homomorphismsin Banach algebras and of derivations on Banach ...
In this paper, we obtain the general solution of a generalized cubic functional equation, the Hyers-Ulam-Rassias stability, and the stability by using the alternative fixed point for a generalized cubic functional equation
The object of this paper is to determine Hyers–Ulam–Rassias stability concerning the Jensen functional equation in intuitionistic fuzzy normed space (IFNS) by using the fixed point method. Further, we establish stability of the Cauchy functional equation in IFNS.
In the present paper a certain form of the Hyers–Ulam stability of monomial functional equations is studied. This kind of stability was investigated in the case of additive functions by Th. M. Rassias and Z. Gajda.
The generalized Hyers–Ulam–Rassias stability of generalized derivations on unital normed algebras into Banach bimodules is established. ∗2000 Mathematics Subject Classification. Primary 39B82; Secondary 46H25, 39B52, 47B47.
In this paper, we investigate the generalized Hyers-Ulam-Rassias and the Isac and Rassias-type stability of the conditional of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras. As a consequence of this, we prove the hyperstability of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras.
Abstract In this paper, we introduce a new integral transform, namely Aboodh and apply the transform to investigate Hyers–Ulam stability, Hyers–Ulam–Rassias Mittag-Leffler–Hyers–Ulam Mittag-Leffler–Hyers–Ulam–Rassias stability of second order linear differential equations.
One of the interesting questions concerning the stability problems of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to the solution of the given functional equation? Such an idea was suggested in 1940 by Ulam 1 . The case of approximately additive mappings was solved by Hyers 2 . In 1978, Rassias 3 generalized Hye...
Sometime in modeling applied problems there may be a degree of uncertainty in the parameters used in the model or some measurements may be imprecise. Due to such features, we are tempted to consider the study of functional equations in the fuzzy setting. The notion of fuzzy sets was first introduced by Zadeh [31] in 1965 which is a powerful hand set for modeling uncertainty and vagueness in var...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید