نتایج جستجو برای: ramsey number

تعداد نتایج: 1171359  

Journal: :Bulletin of The London Mathematical Society 2022

We show that the size-Ramsey number of any cubic graph with n $n$ vertices is O ( 8 / 5 ) $O(n^{8/5})$ , improving a bound 3 + o 1 $n^{5/3 o(1)}$ due to Kohayakawa, Rödl, Schacht, and Szemerédi. The heart argument there constant C $C$ such random $C n$ where every edge chosen independently probability p ⩾ − 2 $p \geqslant n^{-2/5}$ high Ramsey for vertices. This latter result best possible up c...

Journal: :Journal of Combinatorial Theory, Series A 2006

Journal: :Journal of Graph Theory 2011

Journal: :Combinatorics, Probability and Computing 2019

Journal: :Journal of Graph Theory 1994

Journal: :Transactions of the American Mathematical Society 1972

Journal: :Random Structures and Algorithms 2021

The $r$-size-Ramsey number $\hat{R}_r(H)$ of a graph $H$ is the smallest edges $G$ can have, such that for every edge-coloring with $r$ colors there exists monochromatic copy in $G$. notion size-Ramsey numbers has been introduced by Erdős, Faudree, Rousseau and Schelp 1978, attracted lot attention ever since. For $H$, we denote $H^q$ obtained from subdividing its $q{-}1$ vertices each. In recen...

Journal: :Discrete Mathematics 2016
Christopher Cox Derrick Stolee

For a k-uniform hypergraph G with vertex set {1, . . . , n}, the ordered Ramsey number ORt(G) is the least integer N such that every t-coloring of the edges of the complete k-uniform graph on vertex set {1, . . . , N} contains a monochromatic copy of G whose vertices follow the prescribed order. Due to this added order restriction, the ordered Ramsey numbers can be much larger than the usual gr...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید