نتایج جستجو برای: projective special linear group

تعداد نتایج: 1665242  

The prime graph $Gamma(G)$ of a group $G$ is a graph with vertex set $pi(G)$, the set of primes dividing the order of $G$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $G$ of order $pq$. Let $pi(G)={p_{1},p_{2},...,p_{k}}$. For $pinpi(G)$, set $deg(p):=|{q inpi(G)| psim q}|$, which is called the degree of $p$. We also set $D(G):...

2008
MARTIN HERTWECK

Let G denote the projective special linear group PSL(2, q), for a prime power q. It is shown that a finite 2-subgroup of the group V(ZG) of augmentation 1 units in the integral group ring ZG of G is isomorphic to a subgroup of G. Furthermore, it is shown that a composition factor of a finite subgroup of V(ZG) is isomorphic to a subgroup of G.

In this paper‎, ‎we have shown that the coset diagrams for the‎ ‎action of a linear-fractional group $Gamma$ generated by the linear-fractional‎ ‎transformations $r:zrightarrow frac{z-1}{z}$ and $s:zrightarrow frac{-1}{2(z+1)}$ on‎ ‎the rational projective line is connected and transitive‎. ‎By using coset diagrams‎, ‎we have shown that $r^{3}=s^{4}=1$ are defining relations for $Gamma$‎. ‎Furt...

2011
Donald L. White

Denote by S the 2-dimensional projective special linear group PSL2(q) over the field of q elements. We determine, for all values of q > 3, the degrees of the irreducible complex characters of every group H such that S 6 H 6 Aut(S). Explicit knowledge of the character tables of PSL2(q) and PGL2(q) is used along with standard Clifford theory to obtain the degrees.

2017
LING LONG QING XIANG

Abstract. We consider the action of the 2-dimensional projective special linear group PSL(2, q) on the projective line PG(1, q) over the finite field Fq, where q is an odd prime power. A subset S of PSL(2, q) is said to be an intersecting family if for any g1, g2 ∈ S, there exists an element x ∈ PG(1, q) such that x1 = x2 . It is known that the maximum size of an intersecting family in PSL(2, q...

Journal: :international journal of group theory 2016
alireza khalili asboei

let $g$ be a finite group and $pi_{e}(g)$ be the set of element orders of $g $. let $k in pi_{e}(g)$ and $s_{k}$ be the number of elements of order $k $ in $g$. set nse($g$):=${ s_{k} | k in pi_{e}(g)}$. in this paper, it is proved if $|g|=|$ pgl$_{2}(q)|$, where $q$ is odd prime power and nse$(g)= $nse$($pgl$_{2}(q))$, then $g cong $pgl$_

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید