نتایج جستجو برای: posterior distribution

تعداد نتایج: 711755  

Journal: :Science & justice : journal of the Forensic Science Society 2016
Ardo van den Hout Ivo Alberink

Evaluation of evidence in forensic science is discussed using posterior distributions for likelihood ratios. Instead of eliminating the uncertainty by integrating (Bayes factor) or by conditioning on parameter values, uncertainty in the likelihood ratio is retained by parameter uncertainty derived from posterior distributions. A posterior distribution for a likelihood ratio can be summarised by...

A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...

Journal: :The American journal of sports medicine 2002
S Vijay Sekaran Maury L Hull Stephen M Howell

Nonanatomic placement of the posterior horn may occur during arthroscopic implantation of a meniscal transplant. The objective of this study was to determine whether nonantomic placement adversely affects the contact pressure distribution on the medial tibial plateau. Medial meniscal autografts were placed in eight cadaveric knees with the posterior horn tunnel in nonanatomic locations (5 mm me...

2015
Wajiha Nasir Muhammad Aslam

Scale parameter of Log logistic distribution has been studied using Bayesian approach. Posterior distribution has derived by using non informative prior. Posterior distribution is not in close form so we have work with quadrature numerical integration. Various loss functions has been utilized to derive the Bayes estimators and their corresponding risks. Simulation study has been performed to co...

1998
David Barber Christopher M. Bishop

Bayesian treatments of learning in neural networks are typically based either on a local Gaussian approximation to a mode of the posterior weight distribution, or on Markov chain Monte Carlo simulations. A third approach, called ensemble learning, was introduced by Hinton and van Camp (1993). It aims to approximate the posterior distribution by minimizing the Kullback-Leibler divergence between...

1998
M. J. Daniels

Diiculties in computing the posterior distribution of a covariance matrix when using nonconjugate priors has been discussed by several authors. Typically, the posterior distribution for the covariance matrix is computed via the Gibbs sampler and when using a Wishart prior for the inverse of the covariance matrix, one obtains conditional conjugacy (the full conditional distribution of the invers...

1997
David Barber Christopher M. Bishop

Bayesian treatments of learning in neural networks are typically based either on local Gaussian approximations to a mode of the posterior weight distribution, or on Markov chain Monte Carlo simulations. A third approach, called ensemble learning, was introduced by Hinton and van Camp (1993). It aims to approximate the posterior distribution by minimizing the Kullback-Leibler divergence between ...

2010
Anna Kedzierska Dirk Husmeier

We propose a heuristic approach to the detection of evidence for recombination and gene conversion in multiple DNA sequence alignments. The proposed method consists of two stages. In the first stage, a sliding window is moved along the DNA sequence alignment, and phylogenetic trees are sampled from the conditional posterior distribution with MCMC. To reduce the noise intrinsic to inference from...

2014
Sayantan Banerjee Subhashis Ghosal

We consider the problem of estimating a sparse precision matrix of a multivariate Gaussian distribution, including the case where the dimension p is large. Gaussian graphical models provide an important tool in describing conditional independence through presence or absence of the edges in the underlying graph. A popular non-Bayesian method of estimating a graphical structure is given by the gr...

Journal: :J. Multivariate Analysis 2015
Sayantan Banerjee Subhashis Ghosal

We consider the problem of estimating a sparse precision matrix of a multivariate Gaussian distribution, including the case where the dimension p exceeds the sample size n. Gaussian graphical models provide an important tool in describing conditional independence through presence or absence of the edges in the underlying graph. A popular non-Bayesian method of estimating a graphical structure i...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید