نتایج جستجو برای: pharaoh cuttlefish
تعداد نتایج: 885 فیلتر نتایج به سال:
Cephalopod mollusks including octopus and cuttlefish are adept at adaptive camouflage, varying their appearance to suit the surroundings. This behavior allows unique access into the vision of a non-human species because one can ask how these animals use spatial information to control their coloration pattern. There is particular interest in factors that affect the relative levels of expression ...
Dolphins are well known for their complex social and foraging behaviours. Direct underwater observations of wild dolphin feeding behaviour however are rare. At mass spawning aggregations of giant cuttlefish (Sepia apama) in the Upper Spencer Gulf in South Australia, a wild female Indo-Pacific bottlenose dolphin (Tursiops aduncus) was observed and recorded repeatedly catching, killing and prepar...
Previous studies have confirmed the potential of hyperspectral spectroscopy (HS) to detect charcoal rot toxin effect on soybean (Glycine max). However, there is no evidence that it can differentiate among difference responses effect. This research tested HS (900–2400 nm) different caused by fungal pathogen Macrophomina phaseolina. Known susceptible ‘Pharaoh’ and resistant ‘Spencer’ cultivars se...
We tested color perception based upon a robust behavioral response in which cuttlefish (Sepia officinalis) respond to visual stimuli (a black and white checkerboard) with a quantifiable, neurally controlled motor response (a body pattern). In the first experiment, we created 16 checkerboard substrates in which 16 grey shades (from white to black) were paired with one green shade (matched to the...
Most moving animals segregate their locomotion trajectories in short burst like rotations and prolonged translations, to enhance distance information from optic flow, as only translational, but not rotational optic flow holds distance information. Underwater, optic flow is a valuable source of information as it is in the terrestrial habitat, however, so far, it has gained only little attention....
Cuttlefish are colour blind yet they appear to produce colour-coordinated patterns for camouflage. Under natural in situ lighting conditions in southern Australia, we took point-by-point spectrometry measurements of camouflaged cuttlefish, Sepia apama, and various natural objects in the immediate visual surrounds to quantify the degree of chromatic resemblance between cuttlefish and backgrounds...
Because visual predation occurs day and night, many predators must have good night vision. Prey therefore exhibit antipredator behaviours in very dim light. In the field, the giant Australian cuttlefish (Sepia apama) assumes camouflaged body patterns at night, each tailored to its immediate environment. However, the question of whether cuttlefish have the perceptual capability to change their c...
Fish protein hydrolysates were prepared from Cuttlefish (Sepia pharaonis) muscle using alcalase and protamex methods. By conducting the Cuttlefish protein hydrolysate using alcalase (CPHA), it showed higher degrees of hydrolysis, proximate composition, yield, emulsifying activity index (EAI), emulsion stability index (ESI), foaming activity index (FAI), solubility, water holding capacity (WHC) ...
Cephalopods have the most sophisticated dynamic skin coloration for rapidly camouflage in nature. Previous studies have suggested that the pair of optic lobes located bilaterally in their brain plays a key role in controlling the expansion of chromatophores for generating diverse body patterns. However, the functional organization of the optic lobes and their neural control of various body patt...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید