we call $h$ an $ss$-embedded subgroup of $g$ if there exists a normal subgroup $t$ of $g$ such that $ht$ is subnormal in $g$ and $hcap tleq h_{sg}$, where $h_{sg}$ is the maximal $s$-permutable subgroup of $g$ contained in $h$. in this paper, we investigate the influence of some $ss$-embedded subgroups on the structure of a finite group $g$. some new results were obtained.