We show that a dissipative, ergodic measure preserving transformation of a σ-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these. §0 Introduction Let (X,B, m, T ) be an invertible, ergodic measure preserving transformation of a σ-finite measure space, then there are no other σ-finite, m-abs...