نتایج جستجو برای: mortierella alpina
تعداد نتایج: 868 فیلتر نتایج به سال:
The generation of NADPH by malic enzyme (ME) was postulated to be a rate-limiting step during fatty acid synthesis in oleaginous fungi, based primarily on the results from research focusing on ME in Mucor circinelloides. This hypothesis is challenged by a recent study showing that leucine metabolism, rather than ME, is critical for fatty acid synthesis in M. circinelloides. To clarify this, the...
The oil-producing fungus Mortierella alpina 1S-4 is an industrial strain. In order to prepare host strains for a transformation system for this fungus, six uracil auxotrophs were obtained by means of random mutation with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). When the activities of orotate phosphoribosyl transferase (OPRTase, EC 2.4.2.10) and orotidine-5'-phosphate decarboxylase (OMPdecas...
Molecular cloning of the gene encoding sterol Delta7 reductase from the filamentous fungus Mortierella alpina 1S-4, which accumulates cholesta-5,24-dienol (desmosterol) as the main sterol, revealed that the open reading frame of this gene, designated MoDelta7SR, consists of 1,404 bp and codes for 468 amino acids with a molecular weight of 53,965. The predicted amino acid sequence of MoDelta7SR ...
The enzymes that are involved in the elongation of fatty acids differ in terms of the substrates on which they act. To date, the enzymes specifically involved in the biosynthesis of polyunsaturated fatty acids have not yet been identified. In an attempt to identify a gene(s) encoding an enzyme(s) specific for the elongation of gamma-linolenic acid (GLA) (18:3n-6), a cDNA expression library was ...
Mortierella alpina was transformed successfully to hygromycin B resistance by using a homologous histone H4 promoter to drive gene expression and a homologous ribosomal DNA region to promote chromosomal integration. This is the first description of transformation in this commercially important oleaginous organism. Two pairs of histone H3 and H4 genes were isolated from this fungus. Each pair co...
We characterized the de novo biosynthetic pathway of tetrahydrobiopterin (BH₄) in the lipid-producing fungus Mortierella alpina. The BH₄ cofactor is essential for various cell processes, and is probably present in every cell or tissue of higher organisms. Genes encoding two copies of GTP cyclohydrolase I (GTPCH-1 and GTPCH-2) for the conversion of GTP to dihydroneopterin triphosphate (H₂-NTP), ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید