نتایج جستجو برای: moore penrose inverse
تعداد نتایج: 100699 فیلتر نتایج به سال:
A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.
In this paper, we give necessary and sufficient conditions for the matrix [ a 0 b d ] , over a *-regular ring, to have a Moore-Penrose inverse of four different types, corresponding to the four cases where the zero element can stand. In particular, we study the case where the MoorePenrose inverse of the matrix flips. Mathematics subject classification (2010): 15A09, 16E50, 16W10.
Let Qk,n = {α = (α1, · · · , αk) : 1 ≤ α1 < · · · < αk ≤ n} denote the strictly increasing sequences of k elements from 1, . . . , n. For α, β ∈ Qk,n we denote by A[α, β] the submatrix of A with rows indexed by α, columns by β. The submatrix obtained by deleting the α-rows and β-columns is denoted by A[α′, β′]. For nonsingular A ∈ IRn×n, the Jacobi identity relates the minors of the inverse A−1...
We study generalized inverses on semigroups by means of Green’s relations. We first define the notion of inverse along an element and study its properties. Then we show that the classical generalized inverses (group inverse, Drazin inverse and Moore-Penrose inverse) belong to this class. There exist many specific generalized inverses in the literature, such as the group inverse, the Moore-Penro...
In this paper we investigate the inheritance of certain structures under generalized matrix inversion. These structures contain the case of rank structures, and the case of displacement structures. We do this in an intertwined way, in the sense that we develop an argument that can be used for deriving the results for displacement structures from thoses for rank structures. We pay particular att...
We consider the problem of characterizing nonnegativity of the Moore-Penrose inverse for matrix perturbations of the type A − XGY, when the Moore-Penrose inverse of A is nonnegative. Here, we say that a matrix B = (b ij ) is nonnegative and denote it by B ≥ 0 if b ij ≥ 0, ∀i, j. This problemwasmotivated by the results in [1], where the authors consider an M-matrix A and find sufficient conditio...
We propose an adaptation of the partitioning method for determination of the Moore–Penrose inverse of a matrix augmented by a block-column matrix. A simplified implementation of the partitioning method on specific Toeplitz matrices is obtained. The idea for observing this type of Toeplitz matrices lies in the fact that they appear in the linear motion blur models in which blurring matrices (rep...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید