نتایج جستجو برای: monoidal category
تعداد نتایج: 81558 فیلتر نتایج به سال:
Tannaka reconstruction provides a close link between monoidal categories and (quasi-)Hopf algebras. We discuss some applications of the ideas of Tannaka reconstruction to the theory of Hopf algebra extensions, based on the following construction: For certain inclusions of a Hopf algebra into a coquasibialgebra one can consider a natural monoidal category consisting of Hopf modules, and one can ...
We introduce a notion of category with feedback-withdelay, closely related to the notion of traced monoidal category, and show that the Circ construction of [15] is the free category with feedback on a symmetric monoidal category. Combining with the Int construction of Joyal et al. [12] we obtain a description of the free compact closed category on a symmetric monoidal category. We thus obtain ...
A sovereign monoidal category is an autonomous monoidal category endowed with the choice of an autonomous structure and an isomorphism of monoidal functors between the associated left and right duality functors. In this paper we define and study the algebraic counterpart of sovereign monoidal categories: cosovereign Hopf algebras. In this framework we find a categorical characterization of invo...
An action ∗ : V × A−→ A of a monoidal category V on a category A corresponds to a strong monoidal functor F : V−→ [A,A] into the monoidal category of endofunctors of A. In many practical cases, the ordinary functor f : V−→ [A,A] underlying the monoidal F has a right adjoint g; and when this is so, F itself has a right adjoint G as a monoidal functor—so that, passing to the categories of monoids...
There is an ongoing massive effort by many researchers to link category theory and geometry, especially homotopy coherence and categorical coherence. This constitutes just a part of the broad undertaking known as categorification as described by Baez and Dolan. This effort has as a partial goal that of understanding the categories and functors that correspond to loop spaces and their associated...
We present a weak form of a recognition principle for Quillen model categories due to J.H. Smith. We use it to put a model category structure on the category of small categories enriched over a suitable monoidal simplicial model category. The proof uses a part of the model structure on small simplicial categories due to J. Bergner. We give an application of the weak form of Smith’s result to le...
We will construct a monoidal functor (”a monoidal representation”) from the category of framed tangles into the tensor category over a fixed ground vector space which is invariant under Kirby moves and so gives rise to an invariant of 3-manifolds.
We prove that the monoidal 2-category of cospans of ordinals and surjections is the universal monoidal category with an object X with a semigroup and a cosemigroup structures, where the two structures satisfy a certain 2-dimensional separable algebra condition.
We develop the Tannaka-Krein duality for monoidal functors with target in the categories of bimodules over a ring. The Coend of such a functor turns out to be a Hopf algebroid over this ring. Using a result of [4] we characterize a small abelian, locally finite rigid monoidal category as the category of rigid comodules over a transitive Hopf algebroid.
We develop the homotopy theory of Euler characteristic (magnitude) of a category enriched in a monoidal model category. If a monoidal model category V is equipped with an Euler characteristic that is compatible with weak equivalences and fibrations in V, then our Euler characteristic of V-enriched categories is also compatible with weak equivalences and fibrations in the canonical model structu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید